Reinforcement learning with delayed rewards
on continuous state space

Hajime Kimura, Masayuki Yamamura, Shigenobu Kobayashi

Department of Intelligence Science, Graduate School of Interdisciplinary Science and Engineering,

Tokyo Institute of Technology, 4259,Nagatsuda,Midori-ku,Yokohama,227 JAPAN

Abstract

This paper extends reinforcement learning to treat continuous
state environments.

First, we propose a mathematical model that represents a
Markov decision process where each state corresponds to some
region in continuous space. Second, we present a learning sys-
tem that consists of state analyzer, stochastic action selecter,
and incremental learner with DSG(discounted sum of gradient)
method. We show efficiency of the proposed learning system in
comparison with Q-learning through some examples. Finally,we
apply it to a real task of robotics.

1 Introduction

Reinforcement learning aims to adapt a system to a
given environment according to delayed rewards. The
objective of learning is to find an optimal control pol-
icy, that is, a mapping from situations to actions so
that maximize its performance. In this paper,the per-
formance measure is defined as expected rewards per
learning step. The learning system is not told about
the environment, so it must explore by trying a va-
riety of actions. There are two issues to handle de-
layed reward and uncertainty. The environment which
is treated in reinforcement learning can be classified
according to two characteristics. One is types of state
space, the other state transition. Types of state space
are divided into discrete and continuous. Types of
state transition are divided into Markovian and non-
Markovian.

Conventional works can be classified into an identifi-
cation intensive approach and reinforcement intensive
one. The former forcuses upon correctly identifying
the environment, the later does upon rapidly reinforc-
ing experiences. Q-learning[Watkins 92] is a represen-
tative of identification intensive approach, which can
treat not only discrete state environments, but also
continuous state[Lin 93]. Bucket brigade[Goldberg 89]
and profit sharing[Grefenstette 88],[Miyazaki 92| in
classifier systems are reinforcement intensive ap-
proaces, which can be only used for discrete state en-
vironments. There are few work on reinforcement in-
tensive methods under continuous environments.

This paper extends reinforcement intensive learning
to treat continuous state environments. Tablel shows
a classification of reinforcement learning methods.

Table 1: Classification of reinforcement learning meth-
ods

Identification intensive | Reinforcement intensive

Discrete) bucket-brigade
environments Q-learning profit-sharing
Continuous Q-learning augmented

environments by neural networks

2 The domain

This paper discusses reinforce learning for a class of
continuous and Markovian environments. We define
these environments by extending a usual Markov de-
cision process shown in Fig.1 . A state is defined as a

Reinforcement learning system

sensory state 2

vector input action

[environment] Markov decision processI
A states is a region of the sensory vector space.
]

Figure 1: The target environment.

region of sensory input vector space. The learning sys-
tem senses a point in some region. The state transition
follows Markovian rules. The learning system have to
divide continuous sensory state space into appropriate
state regions, and find an optimal control policy in a
Markov decision process.

3 Extended reinforcement
learning system

In this section,we propose a reinforcement intensive

learning algorithm. It is incremental procedure and

can apply to continuous state environments. A frame-
work of proposed learning system is shown in Fig.2 .

Vi, R £
H)
[§‘ X1 pal) al=0 (5\
| X2 > 2=1 i 6'i
[3 ‘ . | State Analyzer 22, o Action selector [+ § 3 l
i g! : g § |
!9’.‘ : w iu }
= 15 /
i% I Mol
[E=H

/

(an
i
)
>

e
4

piemey

o

(

(DSG method)

Figure 2: A proposed learning system.

A proposed reinforcement learning system is com-
posed of a learner, a stochastic action selector and a
state analyzer as shown in this figure. In the follow-
ing,a function of each component and a flow of control
are explained.

3.1 State analyzer

t shows a present time step, and ¢t — 1 shows a time
step before 1 step from the present. The state ana-
lyzer receives a vector of continuous values as a state
input from the environment. The state input vector is
denoted as X (t). We suppose that there are k kinds
of alternative actions. The state analyzer transforms
a state input vector X (¢) into a k-dimensional vector
P(t) by using an inside vector W. Here,W is up-
dated by the learner as descrobed later. Each signal
p(a;),that is the i-th element of P(t), denotes a weight
of actiona;. The range of p(a;) is from 0 to 1.

3.2 Action selector

An action selector receives a vector P(t) from the state
analyzer. It chooses an action stochastically by the so-
called roulette wheel selection according to P(t). Then
it outputs an action vector A(t). Here,A(t) is a k-
dimensional unit vector. If i-th element of A(t) is 1,
then action a; is taken up.

3.3 Learner

The difference between a vector P(t) and an action
vector A(t) is recognized by the learner. An error func-
tion E(t) is defined as

E(t) = |A(t) - P(t)[*.

By using a gradient of the error function E(t) about

the inside variable W' of the state analyzer, a vector
D(t) is defined as

D(t)=-VE()+pD(t - 1),

here

OE(t) OE(t)
oW, oW,

VE(t) = (

B is a constant from 0 to 1. If the learner receives a
reward r, an inside variable W of the state analyzer is
updated by the following equation.

W W+7'D(t)

If the learner receives no reward, W is not updated.
We call this learner DSG(Discounted Sum of Gradient)
method.

3.4 Advantages of the proposed system

The proposed learning algorithm with the incremen-
tal procedure has three advantages. First,a calculation
cost is not so high. Second,it requires a few memory
capacity. Last,parallel implementation on hardware is
possible. The DSG method has the same character-
istic as Q-learning because the both have incremental
procedures.

Furthermore,the design of state analyzer under the
given environment is easy by the following reason.
Environments are limited to Markov decision process
of which states are regions of the state space,so the
most suitable action against a state input is invariable.
Therefore, the reinforcement learning system must get
an invariable mapping from state input to action out-
put in the final stage. This means that the probability
signal vector P(t) must converge to an unit vector.
In other words,the state analyzer should divide state
space into only 2 values correctly about each behavior
a; in the final stage.

As mentioned above,it is easy to design a function of
the state analyzer. In addition, the evasion of inappro-
priate behaviors in the middle stage and the speed-up
of the convergence of the state analyzer can be ex-
pected.

3.5 A simple example
3.5.1 The test environment

The following exercise is considered to confirm that the
proposed reinforcement learning system behaves as the
expectation. We suppose that are four kinds of actions
and states. At each state only one action is effective
and the others are ineffective. The state transitional

S2
reward
)

Figure 3: An environment of the experiment.Action
attributes of the state space is linearly separable.

diagram of this environment used for the experiment
is shown in Fig.3 . The objective of experiment is to
confirm that the system can learn only effective actions
properly.

Arrows in the figure shows actions,and the branch-
ing of an arrow indicates a stochastic transition. Each
state is a super-cube territory with a range of £0.5
around the following coordinates in each axis direction;
50 = (1,0,0,0),51 = (0,1,0,0), S2 = (0,0,1,0),53 =
(0,0,0,1).

When the system is transitted from state z to y,
it is moved to somewhere in the y territory with an
uniform ditribution. If actions are chosen at random
in the environment such as Markov decision process,
the system gets rewards at the theoretical expected
interval of 80 steps. Those intervals are called episode
steps in the following. If the most suitable actions are
chosen, an optimal length of episode step is 8.

3.5.2 The system used for the experiment

All attributes of the state space about an action a; are
linearly separable. Therefore, the neural network of 2
layers used as a state analyzer of the DSG system, and
an experiment was performed. An output of the state
analyzer must be 0 < p(a;) < 1. So the Sigmoid func-
tion was used for each unit which had two saturation
points,0 and 1. 3 was set to 0.7.

An experiment was performed and compared with
the 1 step Q-learning system that had the state ana-
lyzer same as DSG system. The Q-vector according
to actions is outputted from the state analyzer of Q-
learning against a state input. The neural network of
2 layers against the above was used for the Q-learning
system. But it wasn’t restricted an upper bound and a
lower bound of Q-value, so a linear function was used
for each unit. A discount rate v was set to 0.7. As an
action selector of Q-learning system, an usual method
was used shown in the following . 10% of the time an
action is selected at random, and 90% the action with
maximum Q value is selected. The numbers of param-
eters of DSG method and Q-learning was adjusted to
the same.

3.5.3 Simulation results

The average and a standard deviation of episode steps
on 100 trials are shown in Fig.4 .

ZEA%IS-OGE 5 [DSG method]
. [@-leamning] -=---===--=
180 [Random] NI,

This graph indicates the average
and the standard deviation of
160 100 trials.

140

120

100

80 —
N

60 |

T — 796

il TN

40 —

20 -

- } 1 l ‘}]{1813

0 = — 7T

" i
9 5000 Learning step(s)

Figure 4: A plot of the average number of episode-steps
to solve the linearly separable environment.

A vertical axis shows its episode step, and a horizon-
tal axis does learning steps. The point of 0 step of the
horizontal axis means the performance when actions
were chosen at random.

A standard deviation of DSG method is smaller than
Q-learning system, therefore it is clear that the DSG
method is more efficient than Q-learning.

4 Application

The system learned a task of storing a block in the po-
sition of the right hollow using a robot hand as shown
in Fig.5 . Because it is unacceptable in the restric-
tion of the dimension to move a seized block into the
hollow, the closed robot hand must push a free block
at the end of the arrangement. The information that
it can be measured is the hand position x; and the
block position 2 and the hand condition z3 , and it
is inputted as a continuous state vector to the system.
Behavior output from the system is four ways of ”open
the hand(open)”, ”close the hand(close)”, "move the
hand 1step righthand(right)”, "move the hand 1step
lefthand(left)”. A state don’t change even if “open” is
carried out under the condition that a hand has been
already opened, and “close” is carried out under the
condition that a hand has been already closed either.
When “right” or “left” is carried out, a hand is moved
for the distance of only 1 step with the error of the uni-
form ditribution. Even if a block isn’t taken, a block
can be pushed by the closed hand. A block can’t be
moved by the opened hand. It can’t be moved any
further when a hand or a block touches a wall. Even

if a hand moves how, a block or a hand never does
rotation. A block and a hand are returned to the ini-
tial state after a reward is given to the system when
a block is pushed into the right clearance completely.
The dimension used for the experiment is as the fol-
lowing.

Width of the hand H 0.24
Width of the block : 0.40
Range of the block movement : 0<22<1.0
Length of the hand’s 1 step movement 0.315 £ 0.105

Reinforcement learning system

sensory input action
XI,xrzy ,x3p reward right,left,open,or close
. If the block fitted into the follow,

[environment] then the system receives a reward.

", ",
O -

x3=0 :hand close

Figure 5: The block storage problem

It is the problem which can be surely learned if
a state analyzer can do that state space is even di-
vided into the polygon territory properly because it is
a structure that the only one effective action competes
with the other ineffective ones except for a polygonal
state. The network that can divide optional polygonal
regions approximately was shown in the following was
used as the state analyzer. The unit outputs 1 if it
is fired,else it outputs 0. This unit was arranged in
lattice of 27 toward the state input. The network of
nearest-neighbor was made with the neighborhood of 6
units. It was compared with Q-learning system which
has structure same as DSG method. Parameters are
the same as the value used front section. The results
are shown in Fig.6 . Fig.6 shows that they got the
arrangement of block storage task in both techniques.
But, diviations of the DSG system is smaller than Q-
learning, and it is known that efficiency is excellent,
too.

5 Conclusion

This paper presented a DSG based learning system as
a reinforcement intensive approach. It has an incre-
mental learning procedure, it can be applied to contin-
uous state Markovian environments, and it is efficient
because it doesn’t accumulate information for inappro-
priate actions.

A proposed system was applied to some problems.
Performance was compared with Q-learning system.

[DSG method]
380] [@-leaming]
360 [Random]

340 This graph indicates the average
320: and the standard deviation of

] 100 trials

300
260
260
240
220
200
180 S Tk B S et o o e e e 2 e —182.0
10\ |
10| N
10| Y
100 \
80
60
40
20
0

Episode stepg
s o

4
f

—~115.2

r T 1 1
0 300 10000

Leafning slep(s)

Figure 6: Performance on the block storage task.

The future work is to analyze theoretically the behav-
ior of the proposed system.

References

[Goldberg 89] Goldberg,D.E.: Genetic Algorithms
in Search, Optimization and Machine Learning,
Addison-Wesley (1989).

[Grefenstette 88] Grefenstette,J.J.: Credit Assign-
ment in Rule Discovery Systems Based on Ge-

netic Algorithms, Machine Learning 3, pp.225-245
(1988).

[Holland 78] Holland, J. H., and Reightman. J. S.:
Cognitive Systems Based on Adaptive Algorithms,

Pattern-Directed Inference Systems. Waterman, D.
A., and Hayes-Roth, F. ed., Academic Press (1987).

[Sutton 88] Sutton, R. S.: Learning to Predict by the
Methods of Temporal Differences, Machine Learn-
ing 3, pp.9-44 (1988).

[Watkins 92] Watkins, C.J.C.H., and Dayan, P.: Tech-

nical Note:Q-Learning, Machine Learning 8, pp.55-
68 (1992).

[Miyazaki 92] Miyazaki K.,Yamamura M. Kobayashi
S.:. A theory of Profit Sharing in Reinforcement
Learning, Journal of Japanese Society for Arti-
ficial Intelligence, Vol.9,No.4,1994 to appear.(in
Japanese)

[Lin 93] Long-Ji Lin: Scaling Up Reinforcement
Learning for Robot Control, Proc. of the tenth

International Conference on Machine Learning,
pp.182-189 (1993).

	iizuka94001
	iizuka94002
	iizuka94003
	iizuka94004

