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ABSTRACT 

This paper presents a new approach to reinforcement 
learning (RL) to solve a non-linear control problem 
efficiently in which state and action spaces are con- 
tinuous, Many DP-based reinforcement learning (RL) 
algorithms approximate the value function and give a 
greedy policy with respect to the learned value func- 
tion. However, it is too expensive to fit highly accurate 
value functions, particularly in continuous state-action 
spaces. We provide a hierarchical RL algorithm com- 
posed of local linear controllers and TD-learning, which 
are both very simple. The continuous state space is 
discretized into an array of coarse boxes, and each box 
has its own local linear controller for choosing primitive 
continuous actions. The higher-level of the hierarchy 
accumulates state-values using tables with one entry 
for each box. Each linear controller improves the local 
control policy by using an actor-critic method. The 
algorithm was applied to a simulation of a cart-pole 
swing-up problem, and feasible solutions are found in 
less time than those of conventional discrete RL meth- 
ods. 

1 INTRODUCTION 

Many DP-based reinforcement learning (RL) algo- 
rithms approximate the value function and give a 
greedy policy with respect to the learned value func- 
tion. Theoretical results guarantee that several DP- 
based algorithms will find optimal policies (e.g. [16], 
[15], etc.) and a great deal of effort has been made on 
the techniques to approximate value functions (e.g., 
CMAC, Neural-Net). However, it is too expensive to 
fit highly accurate value functions, particularly in con- 
tinuous state-action spaces. To overcome this prob- 
lem, several techniques are proposed (e.g., Parti-game 
[lo], Coarse grids Senvironment models +search tech- 
niques [4], interpolation on a coarse grid [3]). On the 
other hand, it is shown that a local gradient-ascent 
search over stochastic policy-space is possible without 
explicitly computing value or gradient estimates [17], 
[8]. That is to say, the DP-based RL methods have 
features of a global search in terms of optimality and 
computational expense, and the gradient RL methods 
have a feature of a local search. This paper presents a 

new model-free approach that bridges a gap between 
DP-based methods and local gradient-ascent methods. 

In real-world applications, an approach combining 
discrete RL methods with linear controllers is promis- 
ing since there are many non-linear control problems 
that can be decomposed into several local linear con- 
trol tasks. Based on this principle, we provide a new 
algorithm with the key ideas including: 

A hierarchical RL method composed of discrete TD 
method [13] and local linear controllers, which are 
both very simple. 

Generalization techniques for continuous state- 
action spaces: coarse discretization for the high- 
level of the hierarchy, and local continuous-vector 
representation for the low-level linear controllers. 

A policy improvement algorithm for the local linear 
controllers with imperfect value functions. 

The coarse state-space quantization is a quite simple 
way to cope with the curse of dimensionality. But 
in many cases, it often gives rise to undesirable non- 
Markovian effects. In our approach, local linear con- 
trollers, which use a continuous-vector for the local 
state representation, make up for these effects. 

Although hierarchical algorithms can often yield 
sub-optimal solutions, there are significant benefits in 
learning efficiency, search space, and re-use of knowl- 

edge [51, P41, WI. 1 n g eneral, the low-level of the hi- 
erarchy is composed of learning control modules that 
represent subtasks or abstract actions. Each subtask 
is defined in terms of termination conditions, and the 
low-level module is to find a local optimal policy. The 
RL techniques for discrete semi-Markov decision pro- 
cesses (SMDPs) would be applied to learning of the 
high-level module that selects a low-level modules as 
abstract action. In our approach, the low-level mod- 
ules correspond to linear controllers. 

Actor-critic methods [l] are often used for learn- 
ing on the linear controllers [7], [6]. Generic actor- 
critic methods can be classified into a local gradient- 
ascent method with respect to policy space by using 
learned value functions. But in our hierarchy, the lin- 
ear controllers cannot hold accurate value functions on 
account of practical limitations on the computational 
resources. Fortunately, it is shown that an actor-critic 
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algorithm using eligibility traces in the actor can im- 
prove its stochastic policy even though the estimated 
value function is inaccurate [8]. We take advantage of 
this method for the local policy improvement. 

2 PROBLEM FORMULATION 

2.1 Markov Decision Processes 

At each discrete time t, the agent observes xt contain- 
ing information about its current state, select action 
at, and then receives an instantaneous reward rt re- 
sulting from state transition in the environment. In 
general, the reward and the next state may be ran- 
dom, but their probability distributions are assumed 
to depend only on xt and at in Markov decision pro- 
cesses (MDPs), in which many reinforcement learning 
algorithms are studied. In MDPs, the next state y is 
chosen according to the transition probability p&, and 
the reward is given randomly according to the expec- 
tation r,“. but the agent does not know p& and rg 
ahead of time. The objective of reinforcement learning 
is to construct a policy that maximizes the agent’s per- 
formance. A natural performance measure for infinite 
horizon tasks is the cumulative discounted reward: 

(1) 
k=O 

where the discount factor, 0 5 y < 1 specifies the 
importance of future rewards, and Vt is the value on 
time t. In MDPs, the value can be defined as: 

where E, denotes the expectation assuming the agent 
always uses stationary policy r. The objective in 
MDPs is to find an optimal policy that maximizes the 
value of each state a: defined by Equation 2. In MDPs, 
the optimal value in state x, denoted V*(x) satisfies 
the Bellman equations for all CC: 

V*(x) = m;x 
[ 
r,” + x$(x, Y) + 7 V*(Y) . (3) 

Y 1 
2.2 A Non-Linear Control Problem 

We are given learning control of non-linear dynamic 
systems in which : 

l State and action spaces are continuous and multi- 
dimensional. 

l The task could be decomposed into several local 
linear or bang-bang control tasks. 

l The agent does not know dynamics of the environ- 
ment ahead of time. 

Throughout the paper, we use a cart-pole swing-up 
task for the example. 

3 COMBINING DISCRETE TD(0) WITH 
LOCAL LINEAR CONTROLLERS 

3.1 Hierarchical Decomposition 

In our approach, the agent adopts hierarchical state 
representation. The higher-level of the hierarchy uses 
discrete representation of the state variables by coarse 
quantization. Representative points are situated at the 
center of the grid’s boxes. Each box has its own local 
linear controller. 

Assume that given a n-dimensional state input 

(Zl,Z2,.. .xn) and the corresponding box (Bi) with 
the representative point at (bf , b$, . . . bk), then the low- 
level linear controller gets a local continuous input 

c= (c1,c2.. .cn) = (x1-bf,x2-b&.,x,-b;) . (4) 

Figure 1 shows an example of the state representation 
in which the state space is two-dimensional. 

x2 

Discrete State = 82 

Linear controller uses 
this vector. 

0 Xl 

Figure 1: An example of the hierarchical state rep- 
resentation in a 2-dimensional task. Small circles at 
the center of the grid’s boxes denote its representative 
points. 

3.2 Event-driven Decision Making 

In dynamic control, an optimal policy often selects the 
same action (or holds similar continuous action) for 
a certain period of time. Then, uniform regions are 
likely to exist in the state space where all of the states 
have the same (or similar) action. In our approach, 
the coarse grids approximate the uniform regions. The 
high-level decision maker selects abstract action each 
time when the continuous state input is going across 
the boundary of the box, or a certain period of time 
passes. This model of abstract action can be seen as an 
extension of Markov options [14] in which the policy 
is given by linear controller and the termination con- 
dition is given by the boundary of the box. Figure 2 
helps to define the big-steps that the high-level learner 
takes. If all the linear controllers hold stationary pol- 
icy, the high-level learner is to solve a semi-Markov 
decision problem. 
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Figure 2: The big-steps on the high-level learner. This 
modeling is closely related to semi-Markov decision 
processes (SMDPs). The high-level decisions are only 
allowed at events which occur whenever the state tran- 
sition goes across the boundary of the box, or a certain 

period of time passes. 

3.3 A Learning Algorithm 
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Figure 3: The hierarchical structure of the algorithm. 
B1,B2,...Bi... B, denote the state boxes, and every 
small rectangle labeled “B,, 01” denotes a linear con- 
troller. 

Figure 3 gives an overview of the hierarchical algo- 
rithm. The high-level learner accumulates state values 
using tables with one entry for each box. In this case, 
each box value V(Bi) represents approximation of av- 

eraged values weighted by the visiting frequency over 
the coarse regions, i.e., V(Bi) zt CrEB, U”(z)V”(x), 
where Bi denotes the box, V(z) denotes the proba- 
bility of occupying state x under the policy r. The 
learner also accumulates state value V(Bi). Unfortu- 
nately, this value function does not satisfy Bellman 
equations in the strict sense. However, we try to pro- 
vide a good approximation algorithm. 

Assume that the agent selects a linear controller at 
time t in the region B(t) and makes next decision at 
time t + rE + 1 in the region B(t + k + 1). Then we 

V- 

approximate values at each time by: 

E(V) = E{rt +y rt+1 + Y2P+2 . . . + y%+k} 

+ykflV(B(t + k + l)), 

EN;,) = E{n+1 + -v-t+2 + y2rt+3 . . . + y +3+k) 

+ykV(B(t + k + l)), 

JW&} = E{n+k) + yV(B(t + k + 1)). 

We approximate the value of the box Bi according to 
averaging these values: 

V(Bi)=~(~~+V”;‘...+V’;“). (5) 

Then, the TD-error for V(B) in the high-level module 
is given by 

V(B(t + k + 1)) - V(B(t)) . 

(6) 

This result leads us to the learning algorithm for the 
high-level learner. 
A Learning Method for High-Level Module: 
To estimate box values, the algorithm updates by 

V(B(t)) t V(B(t)) + a,, (TD-error) , (7) 

where a, is a learning coefficient, and TD-error is given 
by (6). Although this algorithm is ad hoc, it works 
very well for a reason that the learning in the linear 
controllers makes up for undesirable effects. 
A Learning Method for Linear Controllers: 
The high-level module selects a linear controller associ- 
ated with the corresponding state box. When the state 
input vector is n-dimensional, the linear controllers 
have n + 1 parameters W = (uI~, w2,. . . w,+l) per di- 
mension of the output vector. The controllers learn W 
to make good control. A linear controller determines 
its state feedback-gain parameters (gl, g2, . . . gn+l) as 
to the control rule r by using W, . After that, primitive 
actions are selected according to R until the termina- 
tion. The linear controllers adopt an actor-critic archi- 
tecture to learn feedback-gain parameters. The actor- 
critic provides continuous action as the feedback-gain, 
and makes use of V(Bi) for the critic. The output of 

the critic is too coarse to calculate value gradient from 
the learned value function, because the approximation 
function V(Bi) is flat in the same state region. There- 
fore we adopt a slightly modified actor-critic algorithm 
using eligibility traces in the actor [8], that can improve 
its policy even though the estimated value function is 
inaccurate. 
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Figure 4: An instanceof the linear controller. gi de- 
notes a feedback gain which is characterized by wi ac- 

cording to gi = wi + N(0, u”). The controller learns wi 
to achieve good control. 

Figure 4 shows an instance of the actor-critic al- 
gorithm in which the action is of one dimension. In 
the beginning of the linear control, the actor selects 
its feedback-gain parameters (gr ,g2, . .. gn+l) accord- 
ing to gi = wi + N(0,(r2) for all i = 1,2,...n + 1, 
where N(0,a2) denotes the normal distribution. At 
each time step t < t + i 5 t + k, primitive actions 
are selected until the termination of the linear control 
according to 

a = cm+ c2g2 + ~~~+Gzgn +$I,+1 1 (8) 

where C= (cr,cs,... c,) is the local continuous vector 
at the time t + i as shown in Equation 4. When the lin- 
ear controller terminates at time t + k + 1 in the region 
B(t+k+l), alll’ mear controllers updates according to 

Tracei +- Tracei + (gi - wi) 

Wi c wi + CY,, (TD-error) Tracei 

Tracei + $“) Tracei 

where Tracei denotes an eligibility trace on wi, and (Y,, 
is a coefficient of learning. TD-error is shown in Equa- 
tion 6. The eligibility of wi corresponds to (gi - wi) 
that is similar to Gaussian unit [17] and Gullapalli’s 
neural reinforcement learning unit [7]. 

4 Applying to a Cart-Pole Swing-Up Task 

The behavior of this algorithm is demonstrated 
through a computer simulation of a cart-pole swing- 
up task. We modified the cart-pole problem described 
in [l] so that the action is taken to be continuous. The 
dynamics are modeled by 

gsinB+cosB 
( 

-F-ml~Zsin 8+pcsgn(2) 

ri’ = 
Mfm > 

/l,e -- 
me 

ez-x ( 
m cd 6 

> 

I 

F + me 4” sin B - e cos 0 
> 

- pcsgn(i) 
2 = 

M+m 
> 

where M = l.O(kg) denotes mass of the cart, m = 

O.l(kg) is mass of the pole, 2e = l(m) is the length of 

-2-e 
x=0 

Figure 5: A simulation model of the cart-pole task. 

the pole, g = 9.8( m / sec2) is the acceleration of grav- 
ity, F(N) denotes the force applied to cart’s center of 
mass, pe = 0.05 and pLp = 0.01 are coefficient of friction 
of the pole and the cart respectively. In this simula- 
tion, we use discrete-time system to approximate these 
equations, where At = 0.02sec. At each discrete time 

step, the agent observes (z, i:, 6’,6’), and controls the 
force F. The agent can execute action in arbitrary 
range, but the possible action in the cart-pole system 
is constrained to lie in the range [-lo, 10](N). When 
the agent chooses an action which does not lie in that 
range, the action F is saturated. The system begins 
with (x, i, 8,e) = (O,O, 3.0,O). When the cart collides 
with the end of the track (-3.0 < x 5 3.0), the cart re- 
bounds from the bumper with a coefficient of rebound 
0.2. The agent receives a reward (penalty) signal of 
(a) -1 when the pole falls over f0.8a (rad), 
(b) -4 when the cart bounces at the end of the track, 

(c) -3 when e < -10 or 10 < 4 (rad/sec), 

(d) $1 when -0.1337r < B < 0.133n and -2 < 4 < 2 
(rad/sec). 

4.1 Implementation 

The state space is normalized as (x,?, B,8) = 
(f3.0 m, AlO m/set, +A rad, f10 rad/sec) 
into (f0.5, ~tO.5, f0.5, &0.5). The agent discretizes the 
normalized state space evenly into 3 x 3 x 5 x 5 = 225 
or 3 x 3 x 6 x 6 = 324 boxes, and attempts to store 
V(Bi) in each box. Each linear controller accumu- 
lates five feedback-gain parameters wl, ~2, . . . ~5, for 

the continuous-state input is 4-dimensional. In the lin- 
ear controllers, an action a is generated by Equation 8, 
where the normal distribution follows u = 0.5. Then 

the force F is executed according to F = a x 20. 
The high-level hierarchy makes decision each time 

when the continuous state input moves to a different 

box or the state input keeps within the same box for 
2 seconds (100 steps). The learning rate (Y, is set 
to 0.3 in 3x3~6~6 boxes or to 0.1 in 3x3~5~5 boxes. 

The learning coefficient of the actor-critic is set to 
Q ae = 0.01. The discount rate is set to y = 0.98. 
Initial feedback-gain parameters are all set to zero for 

all linear controllers. 
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Figure 6: On-line performance using 3x3~6~6 and 3x3~5~5 grids. 

100 
steps 

Figure 7: An example of behavior on 3x3~6~6 grids. 

4.2 Simulation Results 

Figure 6 shows the on-line performance with using dif- 
ferent grids. The performance measure is the occu- 
pancy rate of the current state in which the system 
gives positive reward. The rate is calculated by using 
20 independent runs. The results show that the pro- 
posed methods achieved learning to gain positive re- 
wards. The increase of the performance with 3 x 3 x 5 x 5 
boxes is better than with 3 x 3 x 6 x 6 boxes: One reason 
for this is an effect of decreasing the number of boxes 
by the coarse discretization. The other is that the lo- 
cation of the boundaries of the boxes fits for this task 
fortuitously. Figure 7 and 8 show examples of trajecto- 

0 50 100 150 200 
steps 

Figure 8: An example of behavior on 3x3~5~5 grids. 

ries on learned greedy policies after 7,200,OOO steps (40 
hours on simulation time). The policies were feasible, 
but no agent could obtain optimal swing-up behavior. 
The reason is that the growth of swing-up behavior is 
slowed down for decreasing in opportunity of swing- 
up, because the agent makes progress in keeping the 
pole vertical. The bottom in figure 7 and 8 shows the 
corresponding state-action flow respectively. The be- 
havior seems to be a mixture of bang-bang control and 
linear control. Around B = 0, we should notice that 
a bang-bang control rule was found by the algorithms 
with 3 x 3 x 6 x 6 boxes whereas a linear control rule 
was found by the algorithms with 3 x 3 x 5 x 5 boxes. 
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Anyway, the algorithm founds preferable solutions. 
We also tried conventional Q-learning using 

3x3~10~5 and 3x3~12~6 boxes, which are just twice 
the boxes. But they could not hold the pole vertical. 

5 DISCUSSION 

Evaluation: We cannot conclude superiority of the 
proposed method, because the complexity of our ap- 
proach is obviously larger than that of conventional Q- 
learning in the experiment. The experiment shows that 
the learning of the local linear controllers can make up 
for lack of learning ability on the high-level module. 
Effects of the Partitioning Location: In our test 
cases, different discretizations led the algorithms to 
learning quite different control rules, especially around 
B = 0. It makes clear that the shape and location of 
the quantized regions have great effects on the perfor- 
mance. Joint use of variable-grid methods (e.g. parti- 
game [lo]), would be needed for generating discrete 
representation rather than the use of the fixed grids. 
Time Intervals of High-level Decision Making: 
In our approach, time intervals of decision making on 
the high-level hierarchy are mostly owing to the size of 
the state boxes. It can be seen as an adaptive choice 
of time intervals in continuous-time domains [ll] [2]. 
Learning with Extremely Coarse Value Approx- 
imation: Many DP-based (RL) algorithms are mo- 
tivated by a desire for finding highly accurate value 
functions. However, it costs too much memory to 
approximate such functions in many cases. In con- 
trast, our approach does not stick to finding accurate 
value functions, because the policy can be improved by 
a gradient-ascent search without explicitly computing 
value estimates. 

6 CONCLUSION 

This paper presented a hierarchical RL algorithm com- 
posed of TD method and local linear controllers to 
solve a non-linear control problem in which state and 
action spaces are continuous. It is a hybrid method be- 
tween DP-based value estimation and policy improve- 
ment by gradient-ascent without value estimation. The 
continuous state-action space is discretized into an ar- 
ray of coarse boxes, and roughly the high-level hier- 
archy estimates the value functions over the discrete 
space to find a globally preferable policy. The local 
linear controllers are to improve the policy by stochas- 
tic gradient-ascent. This method does not need to fit 
accurate value functions, therefore it may be promising 
to overcome the curse of dimensionality. The algorithm 
was applied to a simulation of a cart-pole swing-up 
problem, and better solutions are found than those of 
traditional discrete RL methods. 
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