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Abstract: We present a model-based RL approach to cope with continuous space of high D.O.F.
robots, combining model learning and an actor-critic method. The model learner generates a discrete
state-transition model, that helps improvement of both the policy and state-representation. In general,
model-based methods tends to fail in Non-Markovian problems, but the proposed method, using actor-
critic, can �nd good policies in such environments.

1 Introduction

We propose a new approach to construct control
rules automatically for high-degree of freedom robots
such as four-legged or humanoid robots. Learning
problems in such robots have the following features:

1. States and actions are continuous and high-
dimensional large spaces.

2. There exists uncertainty in the state transi-
tion.

3. The number of trial and error interactions is
limited because of its cost, especially in real
robots.

In the 3rd item (limitation of the trial), the learner
would face to the following matters:

� It is desired to �nd allowable good control
rules within the limited interactions.

� It should be able to improve control rules by
gaining more experiences.

� Gaining new experiences is more expensive
than storing all sequences in its memory.

� It should be able to give the expert's knowl-
edge to the controller easily, and to revise the
rules if the given rules include some errors.

State representation gives large inuence to the learn-
ing speed and the quality of the control rules. It
is remarkable in large and continuous state spaces,
where simple partitioning continuous state-space into
a multidimensional grid tends to fail because of curse
of dimensionality. One promising approach to deal

with high d.o.f. robots for state representation is
StateNet3). It takes some representative poses as
the states, and the actions correspond to moving
the other poses. But the state representation must
be given by designers in advance, and transition un-
certainty is not considered in the model. There ex-
ists DP-based or model-based methods to �nd op-
timal control rules in uncertain environments, that
is modeled by Markov decision processes. These
methods need to construct environment models through
trial and error interactions. This approach has sev-
eral advantages that when the environment model
is obtained, the controller can learn the other tasks
easily. A problem is that the controller must con-
struct a very accurate transition model in the model-
based approach. However, the estimated model tends
to inaccurate because of 1) The number of trial
and error interactions are limited, 2) There exists
uncertainty in state observations, especially in our
robotics problem. Actually, control rules obtained
from only DP-based planning in the learned model
are useless in our experiments. Non-Markovian prob-
lems give too bad inuence to DP-based approaches.
It is caused from not only sensor noize but coarse
discretization of state-space. To cope with this prob-
lem, a standard approach is to quantize the state
spaces into smaller �ne cells. But in high-dimensional
space, it cause the curse of dimensionality. The
other approach is to use adaptive grids, however, it
is infeasible to construct any state representations
that have no non-Markovian problems. That is be-
cause using only DP-based methods has limitations.

Recently, several direct approaches based on re-
inforcement learning are proposed, that do not have
models. Q-learning and TD-methods are the repre-
sentative methods. Although these are unstable in
non-Markovian environments, sometimes it is used



because of simplicity of the scheme in such domains.
Policy gradient methods such as actor-critic algo-
rithms can construct desirable policies in a certain
class of non-Markovian environments5). To cope
with continuous state or action space, several meth-
ods are proposed, e.g., CMAC6), an adaptive grid-
ding method1);7);9). Unfortunately, these methods
would not learn suÆciently in the case of limited
times of trials, because they requires enormous num-
ber of trials, Also, naive reinforcement learning ap-
proaches cannot make use of experiences obtained
from executing another tasks.

In this paper we propose a model-based RL ap-
proach to cope with continuous space of high d.o.f.
robots, combining model learning and an actor-critic
method. The model learner constructs a discrete
state-transition model based on StateNet, that helps
improvement of both the policy and the state repre-
sentation. Note that the feature of our method is to
construct a rough transition model in coarse state
representation that tends to cause non-Markovian,
and the learner makes use of such an incomplete
model for the following three items:

� The policy learning is accelerated by using
state value estimated from the model.

� The learner can eliminate wasteful search by
generating a good initial policy from the model
and planning method.

� The learner can improve the state represen-
tation by detecting special states that have a
large error in the model.

We apply the algorithm to an imaginary four-legged
crawling robot, and demonstrate its dynamics. Also
we show preliminary experiments applying to a real
four-legged robot.

2 Problem Formulation

In this paper, we aim at obtaining control rules so
that the robot shown in Fig.1 is to walk through
trial and error within 15 minutes . But it is dif-
�cult to execute suÆcient experiments using real
robots for comparing several algorithms. We con-
sider an imaginary four-legged crawling robot shown
in Fig.2, and we evaluate the proposed methods
from the experiments in that domain.

Figure 1: Real four-legged robot.

Figure 2: Imaginary four-legged crawling robot.

The objective of learning is to �nd control rules to
move forward, but the controller does not know the
dynamics ahead of time. The controller improves
its behavior through a process of trial and error.
At each time step, the agent observes current state,
and select action, and immediate reward is given as
a result of the action and state transition, and the
time step proceeds to the next step. The reward
signal reects achievement of the given task. The
designer must specify the task to learn as the re-
ward representation. Since we want the robot to
go forward, the immediate reward is de�ned as the
speed of the body at each step.

These robots have bounded continuous and dis-
crete state variables. Continuous state variables
are angular-position of the eight joints, and dis-
crete state variables represent four touch sensors for
each legs. The learning agent observes these state
variables. The action the agent selects is an ob-
jective angular-position of 8 joint-motors. That is,



the same dimension of the continuous state. When
the agent select action, the robot moves the mo-
tors towards the commanded positions. When the
joint-angles move to the commanded position, or
changing the sensor variables, then the reward is
given as the result of the transition, and the time
step proceeds to the next step. When the case of
sensor variable changing in the way of moving joint-
motors, the angular-position would not correspond
to the selected objective position. For this reason,
there exists uncertainty of the state transition. The
imaginary crawling robot has four legs, and each leg
has two joints. The body moves forward or back-
ward when some legs are touching the ground and
moving it. Note that the controller should �nd good
assignment of crawling control rules for each leg.
The state space and action space are the same as
the four-legged real robot. For simplicity, we as-
sume that there is no noise in the state observation.

In real four-legged robot, two wheels detect a
movement of its body, and generate the reward sig-
nal; the average of the moved distance of the wheels
is the moved distance of the robot, and the di�er-
ential of the wheels indicates the amount of turning
the head. Since we want the robot to go straight,
the immediate reward is de�ned as the average of
the wheels minus absolute value of the di�erential of
the wheels. Each foot has a touch sensor, and when
the variable changes, an event of decision making
would occur.

In this crawling robot domain, there are many
control rules that can move the body ahead. How-
ever, in the domain of the four-legged robot, �nding
walking rules are diÆcult because there are many lo-
cal optimal behavior such as \not moving" that can
avoid negative rewards.

3 Combining Model Learning with

Reinforcement Learning

We propose a new approach that is combined model
learning and reinforcement learning as below.

3.1 State and Action Representation

The key points are:
1) State quantization by representative points:
The representative points specify the divided re-
gions, and the region is based on distance measure

of L2 norm.
2) Generative discrete state representation:

When the smallest distance between the observed
state and representative points exceeds some thresh-
old, the learner generates a new representative point
at that location.
3) The actions are de�ned as objective states:
The actions correspond to moving the other discrete
states, but the resulting states are not always the
same objective states. In this paper, the number of
objective action states are �xed to avoid wasteful
increasing of similar actions in the process of learn-
ing.

This state-action representation is similar to StateNet3)

that can cope with high-dimensional space by using
small number of representative points. The new fea-
ture of our method is to generate new representative
points. This type of state-action representation is
easy to understand, since the behavior for the task is
shown by some representative poses and transitions
between those poses. Therefore, it is easy for giving
prior knowledge, and also we can easily transform
the knowledge by natural languages. The other ad-
vantage is that the edge of the state region can be
easily improved by moving the position of its rep-
resentative points. A drawback of this approach
is that a local controller is needed to move robots
towards the objective positions, since the action is
corresponding to the objective states. The robots
in this paper already have such a local controller
only in the continuous state variables. But the lo-
cal controller cannot treat properly in the context
of discrete state variables (sensors), the learner is to
control at the level of the StateNet-like representa-
tion.

3.2 Learning of Transition Models

The agent constructs environment models as a Markov
decision process, translating the continuous state
(and action) observation into the above discrete rep-
resentation, and executing most-likelihood estima-
tion by counting the visiting times and accumulat-
ing reward signals. However, the estimated tran-
sition model tends to inaccurate, because 1) State
discretization is too coarse, 2) The amount of the
trial data is not suÆcient.



� �
1. Observe state st, choose action at with prob-

ability �(atj�; st), and perform it.

2. Observe immediate reward rt, resulting state
st+1, and calculate the TD-error according to

(TD-error) = rt +  V̂ (st+1)� V̂ (st) , (1)

where 0 �  � 1 is the discount factor, V̂ (s)
is an estimated value function by the critic.

3. Update the estimating value function V̂ (s) in
the critic according to DP in the estimated
model.

4. Update the actor's stochastic policy by

e�(t) =
@

@�
ln
�
�(atj�; st)

�
, (2)

e�(t)  e�(t) + e�(t) ,

��(t) = (TD-error) e�(t) ,

�  � + �� ��(t) ,

where e� is the eligibility of the policy pa-
rameter �, e� is its trace, and �� is a learning
rate.

5. Discount the eligibility traces as follows:

e�(t+ 1)  �� e�(t) , (3)

where �� (0 � �� � 1) is a discount factor in
the actor.

6. Let t t+ 1, and go to step 1.
� �
Figure 3: An actor-critic algorithm using eligibility
traces in the actor, and the critic is making use of
the model and DP.

3.3 Finding Control Rules to Achive Tasks

The actor-critic algorithm using eligibility traces in
the actor4) is a promising approach to deal with
some class of non-Markovian environments. The
critic estimates state values under the current pol-
icy, and the actor selects action improving its policy
by using the estimated state values and reward sig-
nal. Note that if the critic fails to learn state values,
the actor can improve the policy. In many cases, the
critic plays a role of accelerating the actor's policy
learning.

In this paper, we propose a new scheme in the
critic replacing TD-method with model-learning com-
bined with DP planning. It will be able to provide
more accurate TD-errors to the critic for the pur-

pose of accelerating the actor's learning. Since this
approach remains the feature of the actor-critic, it
can execute the model learning and the policy im-
provement concurrently. It can also obtain some
degree of improved stochastic policy if the learning
is terminated in arbitrary steps. When the agent is
to learn a new policy, if the agent has the appro-
priate transition models, it can eliminate wasteful
trial-and error interaction with the environment by
generating a good initial policy from the model and
the planning method. In the planning, estimated
optimal action would be approximately correct ex-
cepts for the states that have observation uncer-
tainty. Since the agent is to revise only such wrong
actions by using reinforcement learning, it will be
more eÆcient than learning from non-prior knowl-
edge.

Fig.3 speci�es the proposed method. The actor
holds parameterized stochastic policy function, and
updates the policy parameters towards the value
gradient. Let �(aj�; s) denote probability of select-
ing action a under the policy � in the state s, and
� is the policy parameters. The agent improves the
policy � by modifying the parameter �. The param-
eter �� speci�es the actor's eligibility traces. When
�� is close to 0, the policy would be updated accord-
ing to the gradient of the estimated value function
V̂ , and when �� is close to 1, the policy would be
updated by the gradient of the actual return. When
we want to cope with non-Markovian or incomplete-
ness of the critic, �� = 1 is preferable.

In the critic, the state value V̂ (s) under the policy
� is estimated from the transition model and a DP
scheme, given by:

1. For all s, substitute the following into V̂ (s)：P
s0

P
a
Pr(s0js; a)�(aj�; s)

h
Ra(s; s0) + V̂ (s0)

i

2. Repeat the above scheme to converge.

Where the transition probability Pr(s0js; a) from
the state s taking action a to the state s0, and re-
ward function Ra(s; s0) are given by the estimated
model, and action selection probability �(aj�; s) is
given by the actor's policy.

3.4 Improvement of The State Represen-
tation

Moving the representative points to the cen-

ter of gravity: In our method, the performance of



the model would vary in the di�erent trials, because
the position of the generating new representative
point that depends on the corresponding current
state input is quite accidental. Moving the represen-
tative points to the center of gravity may improve
the performance.

State splitting using the likelihood of the model:

In order to decrease the non-Markovian inuence of
coarse state discretizing, we propose a state split-
ting scheme using the likelihood of the model to
the sequence data. When state discretizing is too
coarse in a state region, the state transition prob-
ability would be considerably di�erent in the same
region. This fact lead us that if the likelihood of
the model that is based on the splited region is con-
siderably larger than the likelihood of the original
model, we should split the state region. The simi-
lar state splitting method based on the likelihood is
proposed using decision trees9) . In their method,
the state space is quantized by hyper rectangles,
but our method is discretized in the way of Voronoi
graph. The details of the state splitting algorithm
is omitted because of the limited space.

4 Experiments

In order to con�rm the e�ects of our model-based
actor-critic and state splitting, we compare the other
two algorithms: one is estimated optimal policy de-
rived by DP in the estimated model, the other is
a standard actor-critic4). We set the discount rate
 = 0:9, and the actor's learning coeÆcient of our
method and the standard actor-critic are set to 0:02,
and the critic's learning rate is 0:4. The discrete
action representation is corresponds to the initial
representative points for discrete state representa-
tion, given by: (1 1 1 1 1 1 1 1), (0 0 0 0 0 0 0
0), (1 1 1 1 0 0 0 0), (0 0 0 0 1 1 1 1), (1 1 0
0 1 1 0 0), (0 0 1 1 0 0 1 1), (1 0 1 0 1 0 1 0),
(0 1 0 1 0 1 0 1)．Fig.4 shows the performance of
learned policy averaged over 5 trials. The distance
threshold of the generating new state is 2:0, and all
the learning methods use the same state representa-
tions containing 13 states. Fig.5 and 6 are the same
con�guration except for the number of states, 24
and 46 respectively. The policies obtained by only
the model learning and DP planning hardly move
to the front. The proposed method tends to �nd
better policies than other methods as smaller the
number of states.
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Figure 4: The performance of learned policy aver-
aged over 5 trials in 13 states. The bars are up-
per or lower bound of the data. ModelAC is the
proposed method, RND-DP is model-learning plus
DP-planning with random search behavior.

Fig.7 shows the e�ect of improving state repre-
sentation by the proposed splitting scheme. The
e�ect is evaluated by the quality of learned policies
in the model learning combined with DP-planning
only method. The scheme of moving state represen-
tative points improves performance, then it �nds
good policies frequently. The more increase split-
ting, the agent �nds good policies more stably. But
in our method, the likelihood of the model is de-
creased when the splitting is increased.

We applied the proposed method to the real robot
shown in Fig.1, and the learner �nds good policies
to walk within about 15 minutes.

5 Discussion

InsuÆciency of visiting important states: On
the learning of the transition models, arbitrary ac-
tion selection policy can be taken. This feature of-
ten cause insuÆcient visiting to important states.
For this reason, the e�ect of the proposed method
becomes weak as increasing states. Although we
omitted detailed experimental results, when the crawl-
ing robot learns moving backward from the model
that is constructed by a random action selection, it
is failed to �nd such control rules, because such a
random policy would not provide useful experiences
for learning to move backward.

Accidental state representation: The proposed
method generates discrete state representations on
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Figure 5: The performance of learned policy av-
eraged over 5 trials in 24 states. ModelAC is the
proposed method, RND-DP is model-learning plus
DP-planning with random search behavior.
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Figure 6: The performance of learned policy av-
eraged over 5 trials in 46 states. ModelAC is the
proposed method, RND-DP is model-learning plus
DP-planning with random search behavior.

demand. As a result, the position of the generated
new representative points are quite accidental, and
the quality of the control rules depend on the po-
sition of the states. Finding stable generative state
representation is a challenging future work.

Limitations of local search in the policy space:
Since the proposed method is an extension of the
actor-critic algorithm, It remains the same problem
due to the local policy search algorithm. In order to
avoid this problem, it may be necessary to employ a
method holding several policies and improving them
concurrently using techniques such as importance
sampling.
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Figure 7: The e�ect of splitting states. Adj is mov-
ing representative state points to the center of grav-
ity of the data, AdjSp1 is splitting one state from
Adj, AdjSp2 is splitting one state from AdjSp1, and
so on.
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