Reinforcement Learning in POMDPs with Function Approximation

Hajime Kimura
gen@fe.dis.titech.ac.jp

Kazuteru Miyazaki
teru@fe.dis.titech.ac.jp

Shigenobu Kobayashi
kobayasi@dis.titech.ac.jp

Department of Computational Intelligence and Systems Science
Interdisciplinary Graduate School of Science and Engineering
Tokyo Institute of Technology, 4259, Nagatsuda, Midori-ku, Yokohama, 226 JAPAN

Abstract

Reinforcement learning (RL) tasks of real
world can be characterized by two difficul-
ties: Function approximation and hidden
state. For large and continuous state or ac-
tion space, RL agents have to incorporate
some form of generalization. One way to do
it is to use general function approximators to
represent value function or control policies.
Hidden state problems arise in the case that
RL agents cannot observe the state of the en-
vironment perfectly owing to noisy or insuf-
ficient sensors, partial information, etc. Par-
tially observable Markov decision processes
(POMDPs) are an appropriate model for hid-
den state problems. We have presented a RL
algorithm in POMDPs, that is based on a
stochastic gradient ascent. It uses function
approximation to represent a stochastic pol-
icy, and updates the policy parameters. In
this paper, we apply the algorithm to a robot
control problem, and show the features in
comparison with Q-learning and Jaakkola et
al.’s method. The result shows that the gra-
dient method achieved good results in terms
of handling hidden state, performance sen-
sitivity to increasing the observation space,
and handling function approximation.

1 Introduction

Reinforcement learning (RL) is a promising approach
to learning control, that is likely to become a fun-
damental part of robotics. Many previous works in
RL are limited to Markov decision processes (MDPs).
MDPs are excellent models for delayed reinforcement

tasks with uncertainty and discrete state transition.
Q-learning [Watkins et al. 92] is a representative of
RL algorithms in MDPs. Unfortunately, it needs a
non-realistic assumption that RL agents observe the
state of the environment perfectly. RL tasks of real
world can be characterized by two difficulties: Funec-
tion approrimation and hidden state problems.

For large and continuous state or action space, agents
have to incorporate some form of generalization. One
way to do it is to use general function approximators,
such as neural networks, to represent value function
or control policies. However, the generalization often
causes non-Markovian effects. It can be caused easily
in the case that continuous state-spaces are partitioned
into multi-dimensional coarse grids [Moore et al. 95].
Perceptual aliasing [Whitehead et al. 95] can be seen
as a similar non-Markovian problem.

Hidden state problems arise in the case that agents
cannot observe the state of the environment perfectly
owing to noisy or insufficient sensors, partial infor-
mation, etc. Partially observable MDPs (POMDPs)
[Singh et al. 94] are an appropriate model for hidden
state problems.

The work described in this paper 1s motivated by the
following principles:

o Agents should learn tasks themselves. RL can
make up for lack of knowledge about the tasks.

e Agents should be able to learn within a given finite
memory and given finite computational power. In
many practical situations, the computational re-
sources required to find an optimal solution are
infeasible or economically undesirable.

e Agents should use some function approximators
to generalize state space. It is concerned with the
bound of resources.

e Agents should be able to handle non-Markovian
problems owing to hidden state or function ap-
proximation.

In this paper, attention is focused on RL algorithms
that learn memory-less policies. We take up a RL
task in robotics, that can be seen as a RL in POMDPs
with function approximation. We have presented a
RL algorithm based on a stochastic gradient ascent
[Kimura et al. 96], that can be used to try to improve
a stochastic policy in POMDPs. It uses function ap-
proximator to represent a stochastic policy, and up-
dates the policy parameters. We apply the algorithm
to the task, and show its features in comparison with
Q-learning and Jaakkola et al.’s method.

2 The Problem Domain

Agent

observation X reward R action A

(angles of joints) J(body movement J(turning direction

per step) of the joints)

Environment

Figure 1: Learning a motion to move to the front.

In order to explain the features of practical RL tasks,
we take up a robotics example. Consider a planar
two-link manipulator in a gravitational environment
as shown in Figure 1. It has to move to the front,
but the agent does not know the environment ahead
of time. At each time step, the agent observes noisy
sensor-readings of the joint angles, and outputs turn-
ing direction of the joint motors. The immediate re-
ward is defined as the length that the body moved
forward in the current step. When the body moves
backward, a negative reward is given proportionally
to the distance moved. In order to move the body to
the front, the arm should be controlled as if it is crawl-
ing. Through trial and error, the agent has to learn
such a control policy that maximizes a reward func-
tion. The environment is considered to be continuous

state POMDPs. It has the following 3 difficulties.

(1) Delayed Reinforcement: The agent should
learn the movement as Figure 2 (1). When the arm
is touching the ground and moving as A—B—C, then
positive immediate reward is given, so the agent can
learn this movement easily. On the other hand, the
movement C—D—A gives zero immediate reward. If

-
. 5
s R

(1) A preferable motion. (2) A wasteful motion.

Figure 2: Crawling motions of the robot arm.

the arm is moving wastefully like C>D—-E—D—A as
shown in Figure 2 (2), then the agent is given the same
zero immediate reward. Accordingly, the agent has to
learn adequate actions by delayed reinforcement.

(2) Hidden state problems arise from imperfect
state observation owing to noisy or insufficient sen-
sors. In this paper, POMDPs represent the hidden
state problems.

(3) Function approximation: In order to general-
ize large and continuous state space, the agent has to
use function approximators. There are many ways to
do 1t; neural networks, fuzzy logic systems, etc. The
simplest way i1s quantizing: partitioning the continu-
ous state space into multidimensional grid, and treat-
ing each cell as an atomic object. The grid approach
has a number of dangers. Increasing the resolution
costs computational resource and physical amount of
data exponentially [Moore et al. 95]. In addition, the
cells that are roughly partitioned have hidden state.
This robotics task has the same POMDP problem.
Assume that the continuous sensor-readings are parti-
tioned into 4 discrete cells as shown in Figure 3. The
observation X1 includes two hidden states: one is that
the arm top is touching the ground, the other is not.

The difficulties of this example can be theoretically
generalized to a RL problem in POMDPs with func-
tion approximation.

Figure 3: Partitioning continuous sensor-readings into
discrete cells.

3 Stochastic Gradient Ascent

3.1 Previous Work

Most previous RL algorithms for non-Markovian de-
cision tasks have adopted approaches that combine
some form of state estimation with Q-learning. The
state estimator attempts to generate Markovian state
representation, thereafter Q-learning module finds
value function and optimal policies. Recurrent-model
[Lin et al. 92], [Whitehead et al. 95], Perceptual Dis-
tinctions Approach [Chrisman 92] and Utile Distinc-
tion Memory [McCallum 93] are based on building
a predictive model of the environment. Window-Q
[Lin et al. 92], [Whitehead et al. 95] and Utile Suf-
fix Memory [McCallum 95] use a history of recent
observations as a state representation. Recurrent-
Q [Lin et al. 92] [Whitehead et al. 95] uses recurrent
neural networks. We should notice that most previ-
ous approaches adopt Q-learning to find policies over
internal state space. The first issue we must consider
is that all these techniques cannot guarantee the state
estimator to build a perfect Markovian state repre-
sentation, especially in the resource-bounded agents.
The second is a non-Markovian effect owing to func-
tion approximation to handle the enormous internal
state variables. This is not to deny using the above
state estimators, but that in some cases the agents
should adopt the other adequate RL components for
learning memory-less policies in POMDPs, instead of
Q-learning.

As discussed in [Singh et al. 94], memory-less stochas-
tic polictes can be considerably better than memory-
less deterministic policies in the case of POMDP’s.
[Jaakkola et al. 94] have proposed a policy improve-
ment method based on a Monte-Carlo policy evalua-
tion in POMDPs. The algorithm, we call JSJ method,
operates in the space of stochastic policies. A draw-
back of JSJ method is that the agents cannot use ar-
bitrary function approximator except for quantizing.

We have presented a RL algorithm in POMDPs, that
is based on a stochastic gradient ascent on discounted
reward. It uses function approximator to represent a
stochastic policy, and updates the policy parameters.
We believe it is the most hopeful approach in that case.

3.2 Function Approximation for Stochastic
Policies

The objective of the agent is to form a stochastic pol-
icy, that assigns a probability distribution over actions
to each observation, so that maximize some reward
function. In this paper, 7(a, W, X) denotes probabil-
ity of selecting action a under the policy 7 in the ob-
servation X (Figure 4). The policy is represented by
a parametric function approximator using an internal
variable vector W. The agent can improve the policy
m by means of modifying W. In short, W corresponds
to synaptic weights where the action selecting proba-
bility is represented by neural networks, or W means
weight of rules in classifier systems. The advantage
of the parametric notation of x is that computational
bounds and mechanisms of the agent can be specified
simply by the form of the function. It can provide a
sound theory of learning algorithms for arbitrary types
of agents.

Agent
Probability of action a
X N w(a, W, X) a N
Observation Action

W internal variable

Figure 4: Stochastic policy; The agent can improve a
policy 7 by modifying the vector W.

3.3 General Form of the Algorithm

Figure 5 shows a general form of the algorithm based
on a stochastic gradient ascent. The notation e;()
in the 4th procedure is called eligibility [Williams 92],
that is considered to be information about the exe-
cuted action. D;(t) is a discounted running average of
eligibility, called eligibility trace, that accumulates the
agent’s history of the executed actions. When a posi-
tive reward 1s given, the agent updates W by the pro-
cedure 5 and 6 as if the agent reinforces the probabil-
ity of executed actions recorded in the eligibility trace.
Some theorems have shown in [Kimura et al. 95] and
[Kimura et al. 96], we have proved the following result
in [Kimura97]:

Theorem 1 For allt >0,ace A, X € X and W, we

1. Observe X; in the environment.
2. Execute action a; with probability =(a¢, W, Xy).
3. Receive the immediate reward r;.
4. Calculate e;(t) and D;(t) as
ei(t) = 9 In (ﬂ(at, w, Xt)) ,
Jw;
D,(t) = 6l‘(t) + ’yD,‘(t — 1) ,

where v (0 < v < 1) denotes the discount factor,
and w; does the *" component, of W.

5. Calculate Aw;(t) as
Awi(t) = (re —b) Di(t),

where b denotes the reinforcement baseline.

6. Policy Improvement: update W as

AW () = (Awi(t), Aws(t) - Awi(t)---),
W o« Wta(l—y)AW(),

where « is a nonnegative learning rate factor.

7. Move to the time step ¢t 4+ 1, and go to step 1.
Figure 5: General form of the proposed algorithm.

assume that || and |52 Inm(a, W, X)| are bounded
from above. In ergodic POMDPs, when the agent keeps
a stationary policy w, then AW follows

N-1
1 0
lim —— Aw;(t) = T(s)—VTI
t=0 SES
(1)

where s denotes a state in the underlying MDP, VT (s)
denotes expected discounted reward, U™ (s) denotes the
probability of occupying state s under w. The discount
factor used in VI (s) is identical to v used in the algo-
rithm.

This result means that the average of Aw;(t) is equiva-
lent to the gradient of the expected discounted reward
biased by the state occupancy probability. It says that
the agent can use this algorithm to change the policy
in a direction for increasing discounted reward. It is
interesting in the point that discounting (or forgetting)
past experiences relates to discounting future rewards.
Although there are several issues about defining the
optimality of discounted reward criteria in POMDPs
[Singh et al. 94], it can be used to try to find an ap-
proximately optimal policy with respect to the aver-
age reward by moving the discount factor 4 close to 1.
This algorithm can be seen as an extension of episodic

REINFORCE algorithms [Williams 92].

4 Experiments

4.1 Details of the Robot

We specify the details of the robot shown in Figure
1. The upper arm length is 34, the fore arm length
18 20. The joint of the body and the arm is located
on the height = 18, the horizontal distance = 32 from
the body’s bottom left corner. The angle from hor-
1izontal of the first joint connected to the upper arm
is constrained such that —4 < Jointl < 35 degree.
The angle of the second joint from the axis of the
upper arm to the fore arm is constrained such that
—120 < Joint2 < 10 degree. The motor of the first
joint moves the arm to 1244 degree in the commanded
direction with uniform distribution. Also the motor of
the second joint moves 12+4 degree to the commanded
direction. When the arm is touching the ground, the
arm does not slip, but the body slips easily.

4.2 Implementation of the Agent

4.2.1 Stochastic Gradient Ascent (SGA)

(1) Partitioning the continuous sensor-readings
The vector (#1, g, #3, L4,)
shown in Figure 6 denotes a discrete observation X

into discrete cells:

in Figure 3. The vectors are the unit basis vectors of
length = (number of cells), that is, one component is
1, and the others are 0 with the one appearing at a
different component for each observation, e.g., X; is

(Ila T, T3, l‘4) == (1a Oa Oa 0)

B B Oorl
Stochastic switcher }_’_or Y1

X X 0 1
Stochastic switcher }LP- Y2

2 bit
action output

Sigmoid function

Observation
Figure 6: The discrete input implementation.

(2) Continuous input case: FEach joint’s degree is
normalized as 0 < 0; < 1 (Figure 7).

In this section, w;; denotes a synaptic weight that con-
nects " input unit with j** sigmoid function. Simi-
larly, the associated eligibility is e;;(¢), and the eligi-
bility trace is D;;(t). The input ; and variables w;;

Observation

61 W fl

2 bit

Sigmoid function action output

Figure 7: The continuous input implementation.

are transformed into probability f; yielding

1
fi= . ~
1+ exp (— D im1 T wz’j)

(2)

The output y; denotes a random variable that takes 0
or 1. f; denotes the probability of y; = 1. y; and y-
correspond to the turning directions of the motors in
the joint 1 and 2 respectively.

Table 1: The action probability and the eligibility

B B Oorl
Stochastic switcher }LP- Y1

X X 0 1
Stochastic switcher }LP- Y2

1. Observe X; in the environment.

2. Execute action a¢ = (y1, y2)

with probability m(a:, W, X4).
3. Receive the immediate reward r;.

4. Calculate e;(t) and D;(t) as

‘r’(yj - f]))
eiy(t) +vDij(t = 1),

€ij(t)
Di](t) =

where v (0 < v < 1) denotes the discount factor,
and w; does the *" component, of W.

5. Calculate Aw;(t) as
Awis(t) = (ri—8) Diy(0)

where b denotes the reinforcement baseline.

6. Policy Improvement: update W as

wiy = wi F+a(l =) Awg(t),

action a; | action probability | eligibility e(t) =
= (y1,¥2) m(a;, W, X) %lnﬂ'(aj,W,X)
a=00] 0-f0-f) | =5+
=00 (=f)f e
az = (1,0) Ji(1=f) %%‘1‘ 1:}2%
ag = (1,1) Jife ;—ﬁ—’;}—l—%%

Since the policy and eligibility are shown as Table 1,
the agents shown in Figure 6 and 7 can calculate it by
fi and y; as the following.

-1 9 , where y; = 0,
) = 1 — f; Owij
62]() = i i) where y; = 1
fj 6wz’j) y; = L.
_ Y= Of
[i(1 = f;) Owij
= zi(y — fi) - (3)

Figure 8 shows the concrete algorithm for Figure 6 and
7. It is obtained by using Equation 3 and the general
form shown in Figure 8. The learning mechanism is
very simple and very easy to implement on a parallel
hardware because each sigmoid function can execute
the calculation separately.

The learning rate is fixed to @ = 0.4, reinforcement
baseline & = 0.01. All weight variables, w;;, are ini-
tialized to random values between 40.05.

4.2.2 Q-learning

(1) Discrete input case: Q-learning (one-step Q-
learning) [Watkins et al. 92] is a simple incremental

where « is a nonnegative learning rate factor.

7. Move to the time step ¢t 4+ 1, and go to step 1.

Figure 8: The implemented SGA algorithm both for
discrete case and for continuous case. Note that it can
be executed separately on each sigmoid function.

algorithm based on dynamic programming. The Q-
function is updated in the following way:

AQ = ity Iglea}Q(U,XtH) — Qlar, X¢) ,
Q(at,Xt) — Q(at,Xt)—i—ozAQ .

We use learning rate o« = 0.4 and discount factor
~ = 0.9 because it may converge very slowly if the
discount factor is very close to one. We adopt the
action-selection method based on the Boltzmann dis-
tribution used in [Barto et al. 95]. The probability of
action is given in the ratio of exp(Q/temp), and the

temperature scheduling is given by temp = %.

(2) Continuous input case: Figure 9 shows the
implementation for Q-learning, and the algorithm is
given by

AQ = r+y Iglea}Q(U,XtH) — Q(a¢, X¢)
X
Awj = AQ- W Xe)
3wij
Wi — Wi+ ozAwZ'j .

In this experiment, Q) (as, X¢)/Ow;; = x;. We used
same parameters as the discrete input case, 1.e., « =

0.4,v=10.9 and temp = %'

Q1 Boltzmann

distribution
Q.) 0,1, 2
temp or 3
th) action
emp output

Observation roulette wheel

selection

Linear function

Figure 9: The continuous input implementation for
Q-learning.

4.2.3 JSJ Method

Policy improvement based on a Monte-Carlo policy
evaluation method (JSJ method) [Jaakkola et al. 94]
is composed of two parts: Policy evaluation and pol-
icy improvement.

Policy evaluation: Calculate Q(X, a) values that are
defined by the average reward criteria. When the cur-
rent taking action a; = a, then

1 1

Be(X,a) = (1—m)%ﬁt_1()(,a)+m
1
Qi(X,a) = (l_m)Qt—l(Xaa)
+5:(X,a) (re—7)
ﬁt(X) = (1 - k’t(l)())vt ﬁt—l(X) + k’t(l)()
W) = (1 i) Ve (X) 4 ALY (=)
else when a; # a,
Be(X,a) = v fi—1(X,a)
Qe(X,a) = Qi-1(X,a) + B(X,a) (re —7)
Be(X) = v Bi1(X)
Vi(X) = Viei(X) +6:(X) (re—7)

where k:(X,a) is the number of times (X,a) has oc-
curred, k;(X) is the number of times X has occurred,
7 denotes the average of r;, v, 1s a discount factor that
is preferable to converging to one in the limit. In this
experiment, we set v = 0.95 fixed. A policy improve-
ment step follows this calculation step.

Policy improvement: It is achieved by increas-
ing the probability of taking the best action as de-
fined by Q(X,a). The new policy is guaranteed to
yield a higher average reward as long as for some X,

max, [Q(X,a) — V(X)] > 0.

In this experiment, the probability of taking action
is directly proportional to the ratio of w;, and the

policy refinement is executed by adding 0.005 to the
designated action’s w; and the weights are normalized
thereafter. Initial weights are set to 0.25.

4.3 Results

(1) Discrete input case: Figure 10 shows the av-
erage performance of SGA in 4, 9, 16, 49 cells. The
performance is not so good in rough partitioning con-
dition because of the hidden state, however, the agent
can move ahead by using a stochastic policy in the
critical area. The cells are more increased, the per-
formance grows better, because the higher resolution
alleviates non-Markovian effects. But too many cells
(49 cells) cause wasteful increasing of state variables.
It has a bad influence on early performance.

12

16 cells

49 cells

0.8
9 cells

o
o

4 cells

Average velocity

I
IS

0.2

1 1 1
0 1000 2000 3000 4000 5000
Learning steps

1 1
6000 7000 8000

Figure 10: The average performance of 100 trials in
the case of discrete input.

In the case of discrete observation, SGA can compare
with Q-learning [Watkins et al. 92] or JSJ method
[Jaakkola et al. 94]. Figure 12 to 15 present the re-
sults of the comparison. All algorithms use fixed pa-
rameters that are roughly best tuned on 16 cells.

The SGA method achieved good results in terms of
both handling hidden state in the rough partitioning
condition and insensitivity to increasing the number
of state variables. In the rough partitioning condition
(Figure 12), it is intractable for Q-learning, however,
the SGA and the JSJ method converged to approxi-

Figure 11:
agents learned. (discrete input case)

Sample trajectories of the policies that

mately the same positive expected reinforcement. Al-
though non-Markovian effects remained strongly in 9
cells (Figure 13), Q-learning found an adequate de-
terministic policy. The performance of the Q-learning
was relatively improved by increasing the cells. The
Q-learning dominated others in Figure 15. The reason
for this is that partitioning the continuous observation
into large number of cells makes the task a reasonably
approximated MDP, and Q-learning takes advantage
of Markovian property (because it is based on dynamic
programming), but SGA and JSJ methods do not.

In contrast, the performance improvement of the JSJ
method was more sensitive to increasing the number of
cells than SGA. The reason for this may be a difference
of the number of variables to form the policy, that 1s,
the search space, between JSJ and SGA methods. In
this experiment, the JSJ method needs more variables
than the SGA although the agents have the same num-
ber of cells. But we should notice that reducing the
policy parameters often results in defective function
approximation that causes non-Markovian effects.

Average velocity

Average velocity

12

SGA(2 units) 4 cells ro—t
1 step QL 4 cells +H—
Jaakkola's method 4 cells H8—
0.8 -
0.6 -
Jaakkola’s
! method
0.4 - bl | "giu‘iil-a"‘ Stochastic
Pre-= o gradient
g a i ascent (SGA)
&
Zim
5
02 | “']
i
Oi Q-learning
Il Il Il Il Il Il Il Il
0 1000 2000 3000 4000 5000 6000 7000 8000

Learning steps

Figure 12: Comparison in the case of 4 cells.

1.2

SGA(2 units) 9 cells ro—t
1 step QL 9 cells +H—
Jaakkola’'s method 9 cells Ha—
Jaakkola’s
08 method
SGA .
Q-learning
0.6
0.4
0.2

1 1 1 1 1 1
3000 4000 5000 6000 7000 8000

Learning steps

1
2000

Figure 13: Comparison in the case of 9 cells.

Average velocity

Average velocity

1.2

SGA (2 units) 16 cells ro—t
1 step QL 16 cells +=—
Jaakkola’s method 16 cells Ha—

411

SGA
Jaakkola’s
method
Q-learning

1 1
0 1000 2000 3000

1 1 1
4000 5000 6000

Learning steps

1 1
7000 8000

Figure 14: Comparison in the case of 16 cells.

1.2

SGA (2 units) 64 cells ro—
1 step QL 64 cells +=—
Jaakkola’s method 64 cells Ha—

Q-learning

SGA

Jaakkola’s
method

L L
0 1000 2000 3000 4
Learning steps

1 1 1
4000 5000 6000

1 1
7000 8000

Figure 15: Comparison in the case of 64 cells.

(2) Continuous input case: In this experiment, we
compared the gradient method with only Q-learning,
because JSJ method cannot be applied with an arbi-
trary function approximator.

Figure 16 shows the average performance of 100 tri-
als. Although the gradient method costs more 2 times
of learning steps than the case that the continuous
sensor-readings are partitioned into sufficient cells, it
learns the policy to move to the front certainly. It
is difficult to learn the policy for Q-learning. We
tried Q-learning with another scheduling parameter
temp = %, but the performance was not so
different. The reason for this is that the function ap-
proximator shown in Figure 9 is insufficient to approx-
imate the value function of this task. Q-learning needs
richer resources for function approximation.

Figure 17 shows a trajectory of the gradient method
after 30,000 steps. It was not converged to a fixed
policy. Some stochastic action remained.

12 SGA (2 units) re— H

1step QL H—i

it WW&SGA

&
08 1 M 7
] e 7
0.47 I‘ ||| et
0.2 ‘”’ ‘ ‘ ||||

J‘Hr'II\IH |

‘ sl

L L i
0 5000 10000 15000 20000
Learning steps

> <

Average velocity

t

NN Q-learning

o

25000 30000

Figure 16: The average performance of 100 trials in
the case of continuous input.

5 Discussion
Robustness: The Q-learning was more sensitive
to hidden state, and the JSJ method was more sensi-
tive to increasing the observation space than the SGA
method. Also in the continuous input case, the SGA
method obtained policies adequately with using the
same learning parameters, whereas Q-learning resulted

Figure 17: A trajectory after 30,000 steps in the case
of continuous input.

in failure. These results show that the stochastic gra-
dient method is robustest in terms of handling hidden
state, increasing the observation space, and handling
function approximation.

Exploration strategy: The algorithm makes
progress in the policy improvement proportionally to
the state-visiting frequency. As a result, in a rarely
visiting state, the agent tends to take random action.
It can be considered to be a rational exploratory be-
havior to deal with the tradeoff of exploration and ex-
ploitation.

Advantages in function approximation: SGA
method can apply many types of function approxima-
tor to the policy representation only if w(a, W, X) is
differential with W. Moreover, the SGA method can
be executed in strongly resource-bounded conditions.
In this experiment, the SGA agents learned policies
with using only 2 sigmoid units, 6 weight variables and
6 variables for eligibility trace. If any non-Markovian
effects are caused owing to function approximation,
SGA method may learn better policies than random
action at least.

SGA agents can also adopt fuzzy logic systems or neu-
ral networks as the function approximator, and SGA
agents can handle continuous-valued action by provid-
ing m(a, W, X) as a probability density function. We
believe it 18 a promising approach for reinforcement
learning to make use of expert’s knowledge, because
experts tend to indicate only input/output relations,
not value function. When the input/output relations
are given, we can easily modify initial weights to move
an initial policy close to the expert’s knowledge by us-
ing traditional supervised-learning techniques.

Stochastic policy: SGA method can maintain es-

sential random action even if the others are converged
in approximately deterministic actions. Such a behav-
1or is difficult for Q-learning. Using stochastic policies
is closely related to multi-player games. In Markov
games [Littman 94], random actions are used to deal
with the agent’s uncertainty of the opponent’s move.

Parallel processing: SGA agents can use a lo-
calized computation in some cases. This feature is
the same as REINFORCE algorithms [Williams 92],
also related to probabilistic networks [Russel et al. 95]
(called belief networks or Bayesian networks). Tt is
interesting that the computational scheme of these
methods are very similar, i.e., all these techniques
make use of the gradient of the natural logarithm of
some probability. We think the combination of the
SGA method and probabilistic networks is fairly at-
tractive.

6 Conclusion

This paper discussed that RL agents for practical
tasks have to solve decision problems in POMDPs
with function approximation, and resource-bounded
agents need RL components that learn memory-less
stochastic policies in POMDPs with using an arbi-
trary function approximator. We applied a stochastic
gradient ascent algorithm (SGA method) to a robot
control problem, and showed its features by compar-
ison with Q-learning and Jaakkola et al.’s algorithm
(JSJ method). The SGA method achieved good re-
sults in terms of handling hidden state, performance
sensitivity to increasing the observation space, and
handling function approximation. The combination of
SGA method and some state estimation (finite history
windows, Bayesian networks, etc.) is a future work.

Acknowledgements

Thanks to the reviewers for many useful comments and
suggestions. This work was supported in part by JSPS
research fellowship.

References

[Barto et al. 95] Barto, A. G., Bradtke, S. J. & Singh, S.
P.: Learning to act using real-time dynamic program-
ming, Artificial Intelligence 72, pp. 81-138(1995).

[Chrisman 92] Chrisman, L.: Reinforcement learning with
perceptual aliasing: The Perceptual Distinctions Ap-
proach, Proceedings of the 10th National Conference
on Artificial Intelligence, pp. 183-188 (1992).

[Jaakkola et al. 94] Jaakkola, T., Singh, S. P.; & Jordan,
M. I.: Reinforcement Learning Algorithm for Partially

Observable Markov Decision Problems, Advances in
Neural Information Processing Systems 7, pp.345-352
(1994).

[Kimura et al. 95] Kimura, H., Yamamura, M., &
Kobayashi, S.: Reinforcement Learning by Stochastic
Hill Climbing on Discounted Reward, Proceedings of
the 12th International Conference on Machine Learn-
ing, pp.295-303 (1995).

[Kimura et al. 96] Kimura, H., Yamamura, M.
& Kobayashi, S.: Reinforcement Learning in Partially
Observable Markov Decision Processes: A Stochastic
Gradient Method, Journal of Japanese Society for Ar-
tificial Intelligence, Vol.11, No.5, pp.761-768 (1996 in
Japanese).

[Kimura97] Kimura, H.: Policy Improvement by Stochas-
tic Gradient Ascent: A New Approach to Reinforce-
ment Learning in POMDPs, PhD thesis, Tokyo Insti-
tute of Technology, Japan (1997 in Japanese).

[Lin et al. 92] Lin, L. J. & Mitchell, T. M.: Reinforce-
ment Learning With Hidden States, Proceedings of the
2nd International Conference on Simulation of Adap-
tive Behavior (ICSAB), pp. 271-280 (1992).

[Littman 94] Littman, M. L.: Markov games as a frame-
work for multi-agent reinforcement learning, Proceed-
ings of the 11th International Conference on Machine
Learning, pp. 157-163 (1994).

[McCallum 93] McCallum, R. A.: Overcoming Incomplete
Perception with Utile Distinction Memory, Proceed-
ings of the 10th International Conference on Machine
Learning, pp. 190-196 (1993).

[McCallum 95] McCallum, R. A.: Instance-Based Utile
Distinctions for Reinforcement Learning with Hidden
State, Proceedings of the 12th International Conference
on Machine Learning, pp. 387-395 (1995).

[Moore et al. 95] Moore A. W. & Atkeson, C. G.: The
Parti-game Algorithm for Variable Resolution Rein-
forcement Learning in Multidimensional State-spaces,
Machine Learning 21, pp. 199-233 (1995).

[Russel et al. 95] Russel, S., Binder, J. & Kanazawa, K.:
Local learning in probabilistic networks with hidden
variables, Proceedings of the 14th International Joint
Conference on Artificial Intelligence, pp. 1146-1152
(1995).

[Singh et al. 94] Singh, S. P., Jaakkola, T., & Jordan, M.
I.: Learning Without State-Estimation in Partially Ob-
servable Markovian Decision Processes, Proceedings of
the 11th International Conference on Machine Learn-
ing, pp. 284-292 (1994).

[Sutton 88] Sutton, R. S.: Learning to Predict by the
Methods of Temporal Differences, Machine Learning
3, pp. 9-44 (1988).

[Watkins et al. 92] Watkins, C. J. C. H., & Dayan, P.:

Technical Note: @-Learning, Machine Learning 8, pp.
279-292 (1992).

[Whitehead et al. 95] Whitehead, S. D., & Lin, L. J.: Re-
inforcement learning of non-Markov decision processes,
Artificial Intelligence 73, pp.271-306 (1995).

[Williams 92] Williams, R. J.: Simple Statistical Gradient
Following Algorithms for Connectionist Reinforcement
Learning, Machine Learning 8, pp. 229-256 (1992).

