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Abstract

We present an analysis of actor/critic algo-
rithms, in which the actor updates its policy
using eligibility traces of the policy parame-
ters. Most of the theoretical results for eligi-
bility traces have been for only critic's value
iteration algorithms. This paper investigates
what the actor's eligibility trace does. The
results show that the algorithm is an exten-
sion of Williams' REINFORCE algorithms
for in�nite horizon reinforcement tasks, and
then the critic provides an appropriate re-
inforcement baseline for the actor. Thanks
to the actor's eligibility trace, the actor im-
proves its policy by using a gradient of ac-
tual return, not by using a gradient of the
estimated return in the critic. It enables the
agent to learn a fairly good policy under the
condition that the approximated value func-
tion in the critic is hopelessly inaccurate for
conventional actor/critic algorithms. Also, if
an accurate value function is estimated by the
critic, the actor's learning is dramatically ac-
celerated in our test cases. The behavior of
the algorithm is demonstrated through simu-
lations of a linear quadratic control problem
and a pole balancing problem.

1 Introduction

Actor/critic architecture is an adaptive version of pol-
icy iteration [Kaelbling et al.96]. In general, policy
iteration alternates two phases: a policy evaluation
phase and a policy improvement phase. The actor im-
plements a stochastic policy that maps from a repre-
sentation of a state to a probability distribution over
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actions. The critic attempts to estimate the evaluation
function for the current policy. The actor improves its
control policy using critic's temporal di�erence (TD)
as an e�ective reinforcement. In many cases, the policy
improvement is executed concurrently with the policy
evaluation, because it is not feasible to wait for the
policy evaluation to converge.

The actor/critic algorithms have been success-
fully applied to a variety of delayed reinforcement
tasks; ASE/ACE architecture for a pole balancing
[Barto et al. 83] [Gullapalli 92], RFALCON for a pole
balancing and for control of a ball-beam system
[Lin et al. 96], a cart-pole swing-up task [Doya 96].
Although convergence proofs for the actor/critic algo-
rithms (e.g. [Williams et al. 90] and [Gullapalli 92])
are less than value-iteration based algorithms such
as Q-learning [Watkins et.al 92], the actor/critic algo-
rithms have the following practical advantages.

� It is easy to implement multidimensional contin-
uous action, that is often mixed with discrete ac-
tion [Gullapalli 92]. Because the actor selects ac-
tion by its stochastic policy, therefore problems of
action selection like as Q-learning does not exist.
The Q-learning needs to estimate returns for all
state-action pairs, but the critic would estimate
only the return of each state.

� Memory-less stochastic policies can be con-
siderably better than memory-less determinis-
tic policies in the case of partially observable
Markov decision processes (POMDPs) [Singh 94]
[Jaakkola 94] or multi-player games [Littman 94].

� It is easy to incorporate an expert's knowledge
into the learning system by applying conven-
tional supervised learning techniques to the actor
[Clouse et al. 92].

Eligibility traces are a fundamental mechanism
that has been widely used to handle delayed
reward [Singh 96]. Also the traces are often
used to overcome non-Markovian e�ects [Sutton 95],



[Pendrith et al. 96]. In Barto, Sutton and Anderson's
ASE/ACE architecture, both the critic and the actor
make use of the eligibility trace. Theoretical results of
eligibility traces in the context of TD(�) [Sutton 88]
have been obtained. But, in actor/critic algorithms,
the e�ect of the actor's trace has not been investigated.
This paper presents an analysis of an actor/critic al-
gorithm, in which the actor improves its policy using
eligibility traces of the policy parameters. This may
be the �rst analysis of the actor's eligibility traces.

2 Discounted Reward Criteria

At each discrete time t, the agent observes xt contain-
ing information about its current state, select action
at, and then receives an instantaneous reward rt re-
sulting from state transition in the environment. In
general, the reward and the next state may be ran-
dom, but their probability distributions are assumed
to depend only on xt and at in Markov decision pro-
cesses (MDPs), in which many reinforcement learning
algorithms are studied. The objective of reinforcement
learning is to construct a policy that maximizes the
agent's performance. A natural performance measure
for in�nite horizon tasks is the cumulative discounted
reward:

Vt =
1X
k=0


k rt+k , (1)

where the discount factor, 0 � 
 < 1 speci�es the
importance of future rewards. Vt is called the actual
return, that speci�es how good the reward sequence
after time t is. By this notation, the goal of the learn-
ing is to maximize the expected return. In MDPs, the
expected return can be de�ned for all states as:

V �(x) = E�

"
1X
k=0


k rkjx0 = x

#
, (2)

where E� denotes the expectation assuming the agent
always uses stationary policy �. V �(x) is called the
value function, that speci�es how good the given state
x is. In MDPs, the goal of the learning is to �nd an
optimal policy that maximizes the value of each state
x de�ned by Equation 2. Although similar value func-
tions can be given in POMDPs, diÆculties to de�ne
the optimum have pointed out in [Singh 94].

3 Actor/Critic Algorithms

Figure 1 and 2 give an overview of actor/critic algo-
rithms [Sutton 90] [Crites et al. 94]. There are many
ways to implement the policy and its updating scheme
in the actor. The algorithms for the critic are mostly
TD methods. We should notice the following two
points; one is the actor implements stochastic policy,

the other is the actor improves its policy using TD-
error. This paper especially investigates an algorithm
for the actor.
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Figure 1: A generic actor/critic framework.

1. The agent observes xt in the environment, and the
actor executes action at according to the current
stochastic policy �.

2. The critic receives the immediate reward rt, and then
observes the resulting next state xt+1. The critic pro-
vides TD error as an useful reinforcement feedback to
the actor, according to

(TD-error) =
�
rt + 
 V̂ (xt+1)

�
� V̂ (xt) ,

where 0 � 
 < 1 is the discount factor, V̂ (x) is an
estimated value function by the critic.

3. The actor updates the stochastic policy using the TD-
error. If (TD-error) > 0, action at performed rela-
tively good and its probability should be increased. If
(TD-error) < 0, action at performed relatively poorly
and its probability should be decreased.

4. The critic updates estimated value function V̂ (x) ac-
cording to TD methods. e.g., TD(0) algorithm adjusts

V̂ (xt) V̂ (xt)+� (TD-error), where � is the learning
rate.

5. Go to step 1.

Figure 2: Main loop of the generic actor/critic algo-
rithm.



4 Adding Eligibility Trace to the
Actor

4.1 Function Approximation for Stochastic
Policies

In this paper, �(a;W; x) denotes probability of select-
ing action a under the policy � in the observation x.
The �(a;W;X) is taken to be a probability density
function when the set of possible action is continu-
ous. The policy is represented by a parametric func-
tion approximator using the internal variable vector
W . The agent can improve the policy � by modifying
W . For example, W corresponds to synaptic weights
where the action selecting probability is represented by
neural networks, or W means weight of rules in clas-
si�er systems. The advantage of using the notation
of the parametric function �() is that computational
restriction and mechanisms of the agent can be spec-
i�ed simply by a form of the function, and then we
can provide a sound theory of learning algorithms for
arbitrary types of the actor.

4.2 Details of the Algorithm

Figure 3 speci�es the actor/critic algorithm that uses
the eligibility trace in the actor. The ASE/ACE sys-
tem con�gured for pole-balancing [Barto et al. 83] is
just an instance of this algorithm. The actor's eligibil-
ity in step 3 is the same variable de�ned in Williams'
REINFORCE algorithms [Williams 92]. The eligibil-
ity ei(t) speci�es a correlation between the associated
policy parameter wi and the executed action at. The
eligibility trace Di(t) is a discounted running average
of eligibility. It accumulates the agent's history. When
a positive reinforcement is given, the actor updates W
so that the probability of actions recorded in the his-
tory is increased. It means the TD-error at the time
t a�ects not only the action at but also at�1; at�2; � � �.
At �rst glance, this idea is senseless for improving the
policy, but it has very interesting features given in de-
tail later. Note that the algorithm shown in Figure 3 is
identical to a stochastic gradient ascent for discounted
reward [Kimura et al. 97] when the actor's discount

factor � = 
 and the V̂ (x) in the critic equals a con-
stant b for all observations.

The actor requires a memory to implement W for the
policy and to implement Di for the eligibility trace.
The amount of the memory for Di is equal to W 's.

4.3 An Analysis of the Algorithm

Assume that the actor's discount factor � equals 
,
and for all t < 0, Di(t) = 0, then the algorithm shown

1. The agent observes xt, and the actor executes action
at with probability �(at;W; xt).

2. The critic receives the immediate reward rt, and then
observes the resulting next state xt+1. The critic pro-
vides TD error to the actor according to

(TD-error) =
�
rt + 
 V̂ (xt+1)

�
� V̂ (xt) , (3)

where 0 � 
 < 1 is the discount factor, V̂ (x) is an
estimated value function by the critic.

3. The actor updates the stochastic policy using the TD-
error according to:

Eligibility: ei(t) =
@

@wi

ln
�
�(at;W; xt)

�
,

Eligibility Trace: Di(t) = ei(t) + �Di(t� 1) ,

�wi(t) = (TD-error)Di(t)

W  W + �p�W (t) ,

where wi denotes the ith component of W , ei and
Di are the associated eligibility and eligibility trace
respectively, � (0 � � < 1) is a discount factor for the
eligibility trace, �p is the learning rate for the actor.

4. The critic updates estimated value function V̂ (x) ac-
cording to TD methods. e.g., TD(0) algorithm adjusts

V̂ (x) V̂ (x) +� (TD-error), where � is the learning
rate.

5. Go to step 1.

Figure 3: The actor/critic algorithm adding the eligi-
bility trace to the actor.

in Figure 3 updates the policy parameters as:

1X
t=0
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=
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=
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(4)

=
1X
t=0

ei(t)
�
Vt � V̂ (xt)

�
(5)

Equation 5 is given by Equation 1 and 4. Here we as-
sume that the statistics of the random variable Vt de-
pends only on the current policy parameter. It means
EfVtg is a deterministic function of W , where E de-



notes the expectation operator. This assumption may
be right if the policy is converged to an equilibrium
point. The critic's estimation V̂ (xt) is obviously inde-
pendent of the action at the time t. From the theory
of Williams' REINFORCE algorithm [Williams 92],

the value Vt and V̂ (xt) in Equation 5 can be seen
as a reinforcement signal and a reinforcement base-
line respectively, then we have Efei(t) (Vt� V̂ (xt))g =
(@=@wi)EfVtg. It says that the algorithmupdates pol-
icy parameters statistically in a direction for increasing
the actual return Vt, not in a direction of a gradient
of estimated value function in the critic. Also It can
be seen as an extension of reinforcement comparison
methods [Sutton et al. 98], then V̂ (xt) corresponds to
the reference reward.

From the above analysis and Figure 3, we can ex-
plain what the actor's eligibility trace does. At the
time t, the algorithm reinforces at using TD error
rt+ V̂ (xt+1)� V̂ (xt) as a temporary expedient, there-

after the actor's eligibility trace replaces V̂ (xt+1) with
the actual return (rt+1 + 
rt+2 + 
2rt+3 � � �) in order.

The critic does not a�ect the direction of the average
update vector, because the critic works as a reinforce-
ment baseline. Therefore, the actor can improve its
policy, whether the critic is able to learn the value
function or not. If the critic approximates the value
function well, the actor's learning would be acceler-
ated.

The above results are under the special condition � =

. If � = 0, the actor updates W in the direction
of the gradient of the approximated value function in
the critic. The � (0 < � < 
) interpolates between
the above two limiting cases. The characteristics of
the � are similar to the � in TD(�) [Sutton 88] and
Q(�)-learning [Peng et al. 94].

5 Preliminary Experiments

This section demonstrates the performance of the al-
gorithm applying to a simple linear control problem.

5.1 A Linear Quadratic Regulator (LQR)

The following linear control problem can serve as a
benchmark of delayed reinforcement tasks [Baird 94].
At a given discrete-time t, the state of the environ-
ment is the real value xt. The agent chooses a control
action at that is also real value. The dynamics of the
environment is:

xt+1 = xt + at + noise , (6)

where the noise is the normal distribution that follows
the standard deviation �noise = 0:5. The immediate

reward is given by

rt = �x2t � a2t . (7)

The goal is to maximize the total discounted reward,
de�ned by Equation 1 or 2 for all x. Because the task is
a linear quadratic regulator (LQR) problem, it is pos-
sible to calculate the optimal control rule. From the
discrete-time Riccati equation, the optimum regulator
is given by

at = �k1 xt , where k1 = 1� 2

1 + 2
 +
p
4
2 + 1

.

(8)
The optimum value function is given by V �(xt) =
�k2 x2t , where k2 is a some positive constant. In this
experiment, the set of possible states is constrained to
lie in the range [�4; 4]. When the state transition given
by Equation 6 does not result in the range [�4; 4], the
xt is truncated.When the agent chooses an action that
is not lie in the range [�4; 4], the action executed in
the environment is also truncated.

5.2 Implementation for the LQR Problem

5.2.1 The Actor

Remember the policy �(a;W;X) is a probability den-
sity function when the set of possible action is con-
tinuous. The normal distribution is a simple multipa-
rameter distribution for a continuous random variable.
It has two parameters, the mean � and the standard
deviation �. When the policy function � is given by
the equation 9, the eligibility of � and � are

�(a; �; �) =
1

�
p
2�

exp(
�(a � �)2

2�2
) (9)

e� =
at � �

�2
(10)

e� =
(at � �)2 � �2

�3
. (11)

One useful feature of such a Gaussian unit
[Williams 92] is that the agent has a potential to con-
trol its degree of exploratory behavior. We must draw
attention to the fact that the eligibility is to divergent
when � goes close to 0, because the parameter � is
occupying the denominators of Equation 10 and 11.
The divergence of the eligibility has a bad in
uence on
the algorithm. One way to overcome this problem is
to control the step size of the update parameter vec-
tor using �. It is obtained by setting the learning rate
parameter proportional to �2, then the eligibility can
be seen as

e� = at � � ,e� =
(at � �)2 � �2

�
. (12)

The actor would �rst compute � and � deterministi-
cally and then draw its output from the normal dis-
tribution that follows mean equal to � and standard
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Figure 9: Value function over the parameter space in
the LQR problem, where 
 = 0:9. It is fairly 
at
around the optimum: � = �0:5884, � = 0.

6 Applying to a Cart-Pole Problem

The behavior of this algorithm is demonstrated
through a computer simulation of a cart-pole con-
trol task, that is a multi-dimensional nonlinear non-
quadratic problem. We modi�ed the cart-pole prob-
lem described in [Barto et al. 83] so that the action is
taken to be continuous.

6.1 Problem Formulation

The dynamics of the cart-pole system is modeled by

�� =
g sin � + cos �

�
�F�m` _�2 sin �+�csgn( _x)

M+m

�
� �p _�

m`

`
�
4
3 � m cos2 �

M+m

� ,

�x =
F +m`

�
_�2 sin � � �� cos �

�
� �csgn( _x)

M +m
,

where M = 1:0 (kg) denotes mass of the cart, m = 0:1
(kg) is mass of the pole, 2` = 1 (m) is a length of
the pole, g = 9:8 (m=sec2) is the acceleration of grav-
ity, F (N) denotes the force applied to cart's center of
mass, �c = 0:0005 is a coeÆcient of friction of cart,
�p = 0:000002 is a coeÆcient of friction of pole. In
this simulation, we use discrete-time system to approx-
imate these equations, where �t = 0:02 sec. At each
discrete time step, the agent observes (x; _x; �; _�), and
controls the force F . The agent can execute action in

j j

�

�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
��

x
x = 0

-

F -

Figure 10: The cart-pole problem.

arbitrary range, but the possible action in the cart-pole
system is constrained to lie in the range [�20; 20](N).
When the agent chooses an action which is not lie in
that range, the action executed in the system is trun-
cated. The system begins with (x; _x; �; _�) = (0; 0; 0; 0).
The system fails and receives a reward (penalty) signal
of �1 when the pole falls over �12 degrees or the cart
runs over the bounds of its track (�2:4 � x � 2:4),
then the cart-pole system is reset to the initial state.

6.2 Details of the Agent

In this experiment, the actor adopts similar im-
plementation shown in Equation 9 and 12. The
state space is constrained in the range (x; _x; �; _�) =
(�2:4 m;�2 m/sec; �� � 12=180 rad;�1:5 rad/sec).
The actor has �ve internal variables w1 � � �w5, and
computes the � and � according to

� = w1
xt
2:4

+w2
_xt
2
+ w3

�t
12�=180

+ w4

_�t
1:5

,

� = 0:1 +
1

1 + exp(�w5)
: (16)

Similarly to Equation 14 and 15, the eligibilities
e1 � � �e5 are given by

e1 = (at � �)xt , e2 = (at � �) _xt

e3 = (at � �) �t , e4 = (at � �) _�t

e5 = ((at � �)2 � �2)(1 + 0:1� �) .

The critic discretizes the normalized state space evenly
into 3� 3� 3� 3 = 81 boxes, and attempts to store in
each box V̂ by using TD(0) algorithm [Sutton 88]. The
parameters are set to 
 = 0:95, � = 0:5, �p = 0:001.

6.3 Simulation Results

Figure 11 shows the performance of three learning
algorithms in which the policy representation is the
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