August 24th, 2005 ICCAS 2005 Busan, Korea

Automatic Design for Pipe Arrangement using Multi-objective Genetic Algorithms

Satoshi IKEHIRA* Hajime KIMURA Hiroyuki KAJIWARA

* Department of Maritime Engineering Graduate School of Engineering Kyushu University Fukuoka, Japan

- 1. Introduction
- 2. Formulating Pipe Arrangement Design Problem
- 3. Designing Multi-objective Genetic Algorithms
- 4. Experiments and Results
- 5. Conclusions and Remarks

- 1. Introduction
- 2. Formulating Pipe Arrangement Design Problem
- 3. Designing Multi-objective Genetic Algorithms
- 4. Experiments and Results
- 5. Conclusions and Remarks

Designing Pipe Arrangement

A limit is imposed on the degrees-of-freedom for the route.

Generation pattern

The number of combination: 14The number of variables:3

A pipe is characterized uniquely.

Evaluation function for obstacle (1)

A space set aside to allow for maintenance people to pass

This space is considered as an obstacle.

Evaluation value for obstacle (2)

$$f_{_obstacle} = \sum_{l=1}^{n_o} \sum_{k=1}^{n_p} (b_{kl} - \overline{a}_{kl} + A_l)$$

 $b_{\mathbf{k}\mathbf{l}}$: The length of intersection when the pipe k intersects the obstacle l

- a_{kl} : The averaged length between the center of the gravity of the obstacle k and the part divided by each node of the pipe l
- A_{l} : The length between the center of the gravity

and the top of the obstacle l

- \mathcal{N}_o : The number of obstacles
- n_p : The number of pipes

Evaluation values are worse when a pipe passes through the center of an obstacle and the length of the intersection is long.

- 1. Introduction
- 2. Formulating Pipe Arrangement Design Problem
- 3. Designing Multi-objective Genetic Algorithms
- 4. Experiments and Results
- 5. Conclusions and Remarks

Characteristic of this problem

This problem includes <u>numerical optimization</u> and <u>combination optimization</u> problems.

Using GA, which is direct search method

It is difficult to optimize this problem using usual optimization techniques.

Annealing method

The length of pipe

Multi-objective genetic algorithms

The evaluation value for obstacle can be expected to be improved.

Mutation

Modification operator on Contact: MOC

- 1. Introduction
- 2. Formulating Pipe Arrangement Design Problem
- 3. Designing Multi-objective Genetic Algorithms
- 4. Experiments and Results
- 5. Conclusions and Remarks

Experiments

	Mode-1	Mode-2	Mode-3
The number of pipes	5	7	3
The number of variables	3	2	1
The number of combinations	14	6	2
The total number of variables	15	14	3
The total number of combinations	537,824	279,936	8
The number of all variables		32	
The number of all combinations	Approximately 1.2 trillion		

The space where a obstacle exists

Large-scale optimization problems

We set the problem where many pipes exist closely and a big obstacle exists.

Pareto solutions in 100^{th} generation (1.0×10^4 solution candidates evaluated.) About 10 minutes for searching

Pareto solutions in 1000^{th} generation (1.0×10^5 solution candidates evaluated.) About 60 minutes for searching

The number of pipes:15The number of obstacles:2

The number of pipes:20The number of obstacles:1

The number of pipes:20The number of obstacles:3

- 1. Introduction
- 2. Formulating Pipe Arrangement Design Problem
- 3. Designing Multi-objective Genetic Algorithms
- 4. Experiments and Results
- 5. Conclusions and Remarks

Conclusions

- A design problem for pipe arrangement was formulated.
- A multi-objective Genetic Algorithms suitable for this problem was developed.
- The effectiveness of the proposed method was verified through several experiments.

Future works

- Applying this methodology to a practical design
- Improvements to the proposed algorithms