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Abstract: This paper presents a coarse coding technique and an action selection scheme for reinforcement learning (RL)
in multi-dimensional and continuous state-action spaces following conventional and sound RL manners. RL in high-
dimensional continuous domains includes two issues: One is a generalization problem for value-function approximation,
and the other is a sampling problem for action selection over multi-dimensional continuous action spaces. The proposed
method combines random rectangular coarse coding with an action selection scheme using Gibbs-sampling. The random
rectangular coarse coding is very simple and quite suited both to approximate Q-functions in high-dimensional spaces and
to execute Gibbs sampling. Gibbs sampling enables us to execute action selection following Boltsmann distribution over

high-dimensional action space.
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1. INTRODUCTION

Reinforcement learning (RL) is a promising paradigm
for robots to acquire control rules automatically in un-
known environments. The most popular RL algorithm
is tabular Q-learning [11] because of its simplicity and
well-developed theory. However, RL in real world ap-
plications is to deal with high-dimensional continuous
state-action spaces, that immediately raises the curse of
dimensionality [5], in which costs increase exponentially
with the number of the state-action variables. It includes
two issues in RL: One is a generalization problem for Q-
function over high-dimensional continuous spaces, and
the other is a sampling problem that is to select actions
following a given distribution over high-dimensional con-
tinuous action spaces.

To deal with continuous state space, a number of RL
algorithms combining with function approximation tech-
niques have been invented: Q-net [4] is an extended Q-
learning algorithm by means of using neural networks
to generalize the Q-function, SARSA with CMAC [9]
is a better method because it is based on linear func-
tion approximation, that has good theoretical conver-
gence properties in RL [1]. [8] and [10] proposed RL
algorithms with instance-based function approximation,
and [6] extended it to consider continuous action spaces.
However, these works are not aimed at handling high-
dimensional spaces. [9] introduced hashing to cope with
high-dimensional spaces. Hashing is a consistent pseudo-
random collapsing of a large tiling into a much smaller
set of tiles. This approach is quite favorable, however,
the action sampling problem remains.

In the Q-learning, the state-action value function di-
rectly approximates the optimum state-action value func-
tion independent of the policy being followed. During
learning, there is a difficult exploration vs exploitation
trade-off to be made [3]. One standard practice is known
as Boltzmann exploration, however, its naive computa-

tional cost increases exponentially with the number of ac-
tion variables, independently of the generalization costs.
One solution to overcome this problem is to use Gibbs
sampling, that is a Markov chain Monte Carlo (MCMC)
method for drawing samples in high-dimensional spaces
[21[7].

This paper presents a new approach combining ran-
dom rectangular coarse coding with an action selection
scheme using Gibbs-sampling. The proposed coding
method is quite suited both to approximate Q-functions
in high-dimensional spaces, and to execute Gibbs sam-

pling.
2. PROBLEM FORMULATION

Let S denote state space, .A be action space, R be a
set of real number. At each discrete time ¢, the agent
observes state s; € S, selects action a; € A, and then
receives an instantaneous reward r; € R resulting from
state transition in the environment. In Markov decision
processes (MDPs), the reward and the next state may be
random, but their probability distributions are assumed to
depend only on s; and a,. And the next state s;; is cho-
sen according to the transition probability 7'(s:, a, s¢41),
and the reward 7, is given randomly following the expec-
tation r(s¢, a). The agent does not know 7'(s:, a, st41)
and r(s;, a) ahead of time. The objective of RL is to con-
struct a policy that maximizes the agent’s performance.
Consider cumulative discounted reward as a performance
measure for infinite horizon tasks:

‘/t = Z"yk Tt+k » (1)
k=0

where the discount factor, 0 < v < 1 specifies the impor-
tance of future rewards, and V; is the value at time ¢. In
MDPs, the value can be defined as:
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where E'{-} denotes the expectation. The learning objec-
tive in MDPs is to find optimum policies that maximize
the value of each state s defined by (2). The state & and
the action .4 are both defined as multi-dimensional con-
tinuous spaces in this paper.

3. RANDOM RECTANGULAR COARSE
CODING FOR HIGH-DIMENSIONAL
SPACES

Fig. 1 An example of the random rectangular coarse
coding using 9 features in two-dimensional action
space. The coarse feature T4 is sensitive to the com-
ponent al, and it is defined by the arrow width in the
sub-space al. But the T4 ignores the component a2,
then the rectangle covers the other all sub-space a2.
The feature TS is defined similarly.

Value function approximation can be significantly en-
hanced through the use of feature extraction, a process
that maps the input space z into some vector F(z) =
(f1(x), fa(2), -, fa(z)), that is refered to feature vec-
tor associated with z. Feature vectors summarize what
are considered to be important characteristics of the in-
put space. One of the most important cases of the value
function approximation is that in which the approximate
function is a linear function of the parameter vector W =
(w1, wa, - -, wy) that has the same number of the com-
ponents as the feature vector F'(x). For example, the state
value is approximated by

Vie)= Z file)w; . 3)

This value function is said to be linear. When the set
of the feature vectors {F(z)|x € S} is linearly inde-
pendent, then it is known that the predictions of the TD-
methods converge in expected value to the ideal predic-
tions [9].

To generate feature vectors that are linearly inde-
pendent in high-dimensional spaces, random rectangular
coarse coding is described below. This idea is directly
inspired from "CMAC with hashing” [9]. And it is also
derived from consideration of the Parti-game algorithm

[5] in multi-joint arm problems, in which the complexity
of the ultimate task remains roughly constant as the num-
ber of degrees of freedom increases. These deliberation
lead that a fine state-action representation may be prac-
ticable by regarding some subsets of the state (or action)
variables in high-dimensional spaces.

To explain the concept of the random rectangular cod-
ing, consider a randomized rectangular feature f(z) that
is an element of the feature vector. When an input vector
x is inside of the rectangle, then the corresponding fea-
ture has the value 1, otherwise 0. In our approach, the
feature rectangles are overlapped in many places. This
kind of approach is known as coarse coding [9]. In higher
dimensional space, a feature f(z) selects a few arbitrary
sensitive components of the input vector z, and composes
a hyper rectangle in the sensitive subspace. That is, a fea-
ture f(x) ignores non-sensitive components of the input
vector z. For example in Fig.1, the input vector z is two-
dimensional (a1, a2), and the rectangular T1, T2, - - - T9
are associated with components of the feature vector re-
spectively. Notice that T1, T2, T3, T6, T7, T8 and T9
are sensitive to the components both a1 and a», however,
T4 is sensitive only to a1 and T5 is sensitive only to as.
In this paper, the set of sensitive components, the ranges
and the size of the rectangles are given randomly, but it is
also possible to consider some other sophisticated meth-
ods. Aggregating a number of such features, it is possible
to give a set of feature vectors that is linearly indepen-
dent so that the state-action values can be adequately ap-
proximated over essential states (or actions) in real-world
tasks, without exponential growth of the memory require-
ments.

In this paper, state-features f;(s) where j €
{1,2,...T,} that are defined in state space and action-
features gx(a) where k € {1,2,...7,} that are de-
fined in action space are introduced. It is desirable
that L; norm of the feature vectors are constant (1
is the best!) in linear function approximation. There-
fore, state-feature vectors F'(s) that has 27; compo-
nents F'(s) = (Fi(s), Fa(s), - Far,(s)) and action-
feature vectors (i(a) that has 27, components G(a) =
(G1(a),G2(a), - -Gar,(a)) are given by the state-
features f;(s) and action-features gy (a) respectively ac-
cording to

o) Tils) ,where j <Tj
Fils) = { 1 — fj—r,(s) otherwise. )
, where k <1,

Gla) = { gi (@) )

I —gk-r1,)(a) otherwise.
Then the approximate value function of state-action pairs
(i.e., Q-function) is given by

2T, 2T,

Qoa) = DS B Grla w + (©)

j=1k=1

where w;, are parameters of which the number is 27} x
2T,, and 7 is a normalization factor so that the L1

! The reason is to keep consistency of Q-learning’s learning rate param-
eter avoiding influence of magnitude of the norm.



norm of the feature vectors composed of F;(s) and Gy (a)
keep 1 constant. The parameters w;; are updated by a
gradient-descent method. The specification are shown
later. In this paper, the agent selects action following
Boltzmann distribution using Q-function. The proposed
generalization method has the following advantages:

o The rectangular feature can directly represent mu-
tual dependence between its sensitive components.
It is useful to incorporate domain knowledge about
the task into the agent.

+ The computation both to generate feature vectors
and to update parameters are quite simple and easy.

¢ The computation for action selection in high-
dimensional action-space can be effective particu-
larly with using Gibbs sampling as shown in the next
section.

Although this approximation itself is promising, naive
execution of the Boltzmann exploration over high-
dimensional continuous action-space gives rise to expo-
nential growth of the computational cost.

4. SAMPLING AND LEARNING IN
HIGH-DIMENSIONAL SPACE

4.1 Conventional Approach: Flat Action Selection
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Fig. 2 An action-selection with a regular grid approach
in two-dimensional action space. The probability
function of the action selection P(a) is represented
by quantizing the action space al — a2 into a finite
number of cells.

During learning, Boltzmann exploration is a standard
strategy to cope with exploration vs exploitation trade-off
in the Q-learning. A common approach to treat multi-
dimensional continuous action is to quantize the action
space into a finite number of cells and aggregate all ac-
tions within each cell. Then the action is treated dis-
cretely. Note that each cell needn’t have own variables
to represent action value, because the value is provided
by the coarse coding. In this paper, regular grid parti-
tioning is used that divide 1D equivalent parts into each
dimension of the action-space. That is, when the action-
space is N -dimensional, the partitioning yields D cells.
Each cell is considered to be a discrete action a; where
i = {1,---,D"}. For each decision epoch, an action
a; is selected following an associated probability func-
tion P(a;). Fig.2 shows the regular grid partitions and
its distribution function in two-dimensional action-space.
In this paper, the action-selection probability P(a;) is
given by Boltzmann distribution that contains associated

Q(s, a;) so that
Q(s,a;)—of fset(s
exXp ( T xwidth(s) )

DN Q(s,ai)—offset(s)Y ’
2 j=1€XpP (T><w—dth())

P(al) = (7)

where 7' is a temperature parameter that controls explo-
ration behavior. In many cases, of fset(s) = 0 and
width(s) = 1, but this paper recommends?® of fset(s)
to be average of Q-value in state s and width(s) to be
deviation of Q-value in state s. As shown in (7), the
naive flat action-selection scheme needs to calculate all
discrete action values, that gives rise to exponentially in-
crease with the number of the dimension. For this reason,
Q-learning nor SARSA have little opportunity to apply
real-world tasks that have high-dimensional continuous
action-space.

4.2 Selecting Action by Gibbs Sampling

This section describes an action-selection method for
high-dimensional action space using Gibbs sampling,
that is a powerful technique for generating samples from
multi-dimensional complex distribution. In the Gibbs
sampler, the components of the multidimensional random
variable are resampled in turn, conditional on the oth-
ers, using some fixed ordering. Fig.3 illustrates the Gibbs
sampling for a case with two variables (a1, a2). The dis-
tribution for action selection probability is equal to Fig.2.
In the initial step of Gibbs sampling, an arbitrary sample
(al,a2) is selected in advance. In each iteration, the top
right (1) in Fig.3 represents selecting action al follow-
ing the conditional probability given a2, and the bottom
left (2) in Fig.3 represents selecting action a2 following
the conditional probability given a1 at the top right (1) in
Fig.3, then the iteration is completed. The bottom right
(3) in Fig.3 represents the next iteration, selecting action
al again, following the conditional probability given a2
at the bottom left (2) in Fig.3. After a sufficient number
of iterations, we can take a1 and a2 as the sample from
the distribution. The resulting sample can be considered
to be independent of the sample in the initial step. It is a
difficult problem to predict the lower bounds of the num-
ber of the iteration, therefore we should choose it exper-
imentally. Gibbs sampling is particularly well-adapted
when the joint distribution is not known explicitly, but
the conditional distribution of each variable is known. In
high-dimensions, getting joint distribution costs too ex-
pensive computational resources. For example, if a reg-
ular grid partition divides 10 parts into each dimension
of the 8-dimensional action space, then finding the joint
distribution for the flat action selection costs memory ca-
pacity and computation over 10® variables, whereas the
Gibbs sampling, that uses conditional distribution, costs
10 + 8 variables and the number of iteration can be re-
duced to 102 or 103. That is, Gibbs sampling cuts down
the computational cost over 1,/10000.

Throughout this paper, probability of the action se-
lection is given by (7), but we use particular notation

2 The reason is to keep consistensy of parameter 7' avoiding magnitude
influence of Q-value.
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Fig. 3 An example of the Gibbs sampling scheme with the regular grid approach in two-dimensional action space.
The top left shows a joint distribution of the action selection probability. The top right (1) represents selecting
action a1 following the conditional probability given a2. The bottom left (2) represents selecting action a2 following
the conditional probability given a1 at the top right (1). The bottom right (3) represents selecting action a1 again,
following the conditional probability given a2 at the bottom left (2).

for Gibbs sampling. Suppose that a regular grid par-
tition divides D parts into each dimension of the N-
dimensional action space, same as the case of the flat
action selection. We give a N-dimensional action a
as a = (a',a? ...a"V), where each component a"
(n € {1,2,---N}pisa” € o} (d € {1,2,---D}).
A value of state s and action a is given by Q(s,a) =
Q(a',a? ...a"|s). This value is also equal to the flat
action selection method’s. Sampled components of the
action vector at the iteration ¢ in the Gibbs sampling is
given by a'(t),a%(t),...a" (t). Then, the Gibbs sampler
updates components of the action vector at the iteration
t + 1 following the conditional distribution as

al(t+1) ~ P(atd?(t),d(t),...aN (1)),
a?(t+1) ~ P(a2|a1(t),a3(t),...aN(t)),

aV(t+1) ~ PlaN|a'(t),a(1),...a¥71(t)),
where the conditional probability P(a?|al,a?,...a")is
given by the following Boltzmann distribution:

P(al|a',a?, ... a")

(Q(al,aQ,. a:z,...aN|s)—offset(s))
(

_ exXp T Xwidth(s) $)
- D Q(at,a?,...a™,...a’l|s)—of fset(s) ©
=1 eXp( e demdih(s)

It is simply repetition of similar processes to the flat ac-
tion selection’s shown in (7), however, getting off with
one dimensional action selection. The obvious advantage
is that the Gibbs sampler can get equivalent® samples fol-
lowing (7) without checking out all the Q-values over the

3Tt is supposed that the number of the iteration is enough. Since predict-
ing the lower bounds of this number is a difficult problem, the samples
would be likely to approximate (7).

high-dimensional action-space. Note that since the cal-
culation of the conditional probability in each iteration is
along an arbitrary axis of the action space, the compu-
tational cost can be reduced in the proposed rectangular
coarse coding.

4.3 Learning Algorithms

This section describes Q-learning and SARSA algo-
rithms combined with random rectangular coarse-coding
and the action selection using Gibbs sampling. As shown
in the section 3., state-feature vectors F'(s) that has
2T, components F'(s) = (Fi(s), Fa(s), - For,(s)) and
action-feature vectors ((a) that has 27, components
G(a) = (Gi(a),Ga(a), - -Gar,(a)) are given by the
state-features f;(s) where j € {1,2,...7,} and action-
features gj(a) where k € {1,2,...T,} respectively ac-
cording to (4) and (5). Then the approximate value func-
tion is given by (6). The agent observes state s, and se-
lects action a; following Boltzmann distribution given by
(7). However, actual process of choosing action would
be executed following Gibbs sampling given by (8). Af-
ter that, the agent observes the next state s’ and instan-
taneous reward r resulting from the state transition. The
standard Q-learning algorithm updates values by

TD_error = 7r+vymaxQ@(s’,a) — Q(s,a;),(9)
Q(s,a;) + Q(s,a;) + aTD_error, (10)

where 7 is a discount factor, « is a learning rate parame-
ter, where 0 < o < 1. In my approach, the Q-function is
represented by (6), therefore the updating of (10) is exe-
cuted by modifying the parameters w;, using a gradient-
descent method as

Fj(s) Gr(a:)

5 a

Wik < Wik + a TD_error . (1
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Fig. 4 An example of learned behavior in the rod-in-
maze task. The black circles of the bottom of the rod
represent the positions at which the learner is making
decisions.

Unfortunately, it is difficult to operate max, Q(s’, a)
strictly in high-dimensions, we are to substitute approx-
imated max, (s’, @) found in the process of the Gibbs
sampling. For the other hand, strict SARSA algorithm
can be executed easily by replacing max, Q(s’, a) with
Q(s’, a’), where a' is an action selected in state s'.

5. EXPERIMENTS

This section evaluates the proposed method empiri-
cally in two learning tasks. Fig.4 shows a slightly mod-
ified rod-in-maze task in which both the state and the
action are three-dimensional. The original rod-in-maze
task is proposed by [5]. The state s = (z,y, 0) is three-
dimensional. (z,y) denotes the position of the center of
the rod and must lieinthearea0 < z < land 0 <y < 1.
The 6 denotes the angle of the rod from the horizontal,
and is constrained to lie in the range 0 < ¢ < 7. The
action ¢ = (x4, Y4, 04) is also three-dimensional, repre-
senting a destination of the rod in the state. When the des-
tination position is given as the agent’s action, the simula-
tion of the movement is executed by summing small dis-
placements (6, §y, 06) in the state . The small displace-
ments are given so that each state variable would reach
the destination as fast as possible, but it is constrained
such that \/d2? + §y?> < 5 and — % < 00 < & If
the rod collides with obstacles, or reaches the goal re-
gion, or reaches the destination, then the agent makes the
next decision. The goal region is 0.8 < = < 0.9 and
0.6 < y < 0.7. The rod has length 0.4. In the field,
there exist four polygonal obstacles; Obstacle 1 is a trian-
gle and its apexes are (1.0,0.1), (0.5,0.4) and (1.0, 0.4).
Obstacle 2 is a triangle and its apexes are (0.4,0.0),
(0.5,0.25) and (0.8,0.0). Obstacle 3 is a quadrangle
and its apexes are (0.0, 0.5), (0.25,0.35), (0.25, 0.3) and
(0.0,0.1). Obstacle 4 is a quadrangle and its apexes are
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Fig. 5 Learning results averaged over 10 runs in the
rod in maze task. The vertical axis gives the averaged
reward over 1000 decision steps. The errorbars are
standard deviation.

(0.0,1.0), (0.3,0.8), (0.35,0.55) and (0.0,0.9). When
the rod reaches the goal region, the agent receives reward
100 and the rod is removed to the initial state. Otherwise,
the reward is zero.

In this experiment, all the agents partition the state
space into 1003 = 10° grids, dividing each dimension
into a hundred regular partitions. The action space is also
partitioned into 1003 = 10° grids in the same way. Thus,
the discrete state-action space grows 1003 x 1003 = 10'2,
In our approach, we make 200 randomized rectangular
features over the state space. In each feature, the sensitive
components are selected from the components of the in-
put vector with the probability 0.6 per component. How-
ever, the features that select no sensitive component are
thrown away and reproduced. The ranges of the rectan-
gles in the sensitive subspace are randomly selected from
the grid (e.g., 100 partitions) by uniform distribution. The
features for the action space are generated 200 random-
ized hyper-rectangles in the same way as the state’s. The
number of iteration in the Gibbs sampling is 15, the dis-
count factor v = 0.9, the temperature keeps 7' = 0.4
constant, and the learning rate « = 0.2, of fset(s) and
width(s) in (7) are given by the average and deviation
of Q-values in state s over 20 actions that are selected
by uniform distribution. It is compared with a regular
grid approach: The state space is uniformly partitioned
into 6 x 6 x 6 = 216 regular exclusive hyper-rectangles
without gaps, and the action space is also uniformly par-
titioned into 6 x 6 x 6 = 216 regular exclusive hyper-
rectangles without gaps. Note that in the regular grid ap-
proaches, the hyper-rectangles correspond to the compo-
nents of the feature vector and used only for value ap-
proximation, therefore the actions are selected from the
12 x 12 x 12 discrete action space in the case of the
6 x 6 x 6 = 216 hyper-rectangles.

Fig.5 compares the performance of the random coarse
coding against regular grid approaches averaging over 10
runs. The best solutions of this task are composed of only
three decision steps as shown in Fig.4, but unfortunately



the proposed method often couldn’t find it resulting four
or five decisions. The reason of this result is that the ran-
dom coarse coding generates different rectangles for each
trial, therefore the essential features for the optimum so-
lutions couldn’t be made in such cases. On the other
hand, the uniform grid coding couldn’t find any solutions
at all even though the number of features is larger than
the random coarse coding’s one, especially in the case of
63 states and 62 actions.
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Fig. 6 A learned example behavior of a reaching task
using redundant-arm that have three-joints. The con-
ditions that the joints are shown by black circles are
the positions at which the learner is making decisions.
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Fig. 7 A learned example behavior of a reaching task
using redundant-arm that have four-joints. The con-
ditions that the joints are shown by black circles are
the positions at which the learner is making decisions.

As the second example, Fig.8 shows a slightly modi-
fied multi-joint arm reaching task in which both the state
and the action are 8-dimensional. The original bench-
mark is also proposed by [5]. The arm is planar and com-

GOAL

Fig. 8 A learned example behavior of a reaching task
using redundant-arm that have eight-joints. The con-
ditions that the joints are shown by black circles are
the positions at which the learner is making decisions.

posed of eight links that are connected by the joints in
series. The state s = (61, 0, - - - 0g) is 8-dimensional, ¢,
denotes the angle of the root link from the horizontal, and
6; where ¢ > 1 is the angle of the joint between ith link
and (¢ — 1)th link. All angles are constrained to lie in the
range —0.757 < @ < 0.757. The arm is constrained to
lieinthe area 0 < z < land 0 < y < 1. The action
a = (014,024, - -0sq) is also 8-dimensional, represent-
ing a destination of the joint’s angles. When a destina-
tion is given as the agent’s action, the simulation of the
movement is executed by summing small displacements
(061,602, 06g) in the state space. It is given by

(691,692,(598) = /\(a—s) ,where

T
= ] 1
A m1n<15|a_8| , )

When the arm collides with obstacles, or intersects itself,
or reaches the goal region, or reaches the destination, then
the agent makes the next decision. The position of the
root-joint connected to the base is (0.75,0.5), and the
arm has length 0.6. The goal region is 0.3 < z < 0.5
and 0.8 < y < 0.9. The initial state is #; = —0.757 and
the others are all 0. There exist two polygonal obstacles;
Obstacle 1 is a rectangle, and its apexes are (0.8,0.0)
, (0.8,0.2), (1.0,0.3) and (1.0,0.0), Obstacle 2 is a
quadrangle, and its apexes are (0.0, 0.45), (0.55,0.45),
(0.55,0.55) and (0.0, 0.55).

In this experiment, all the agents partition the state
space into 10% grids, dividing each dimension into regu-
lar 10 partitions. The action space is also partitioned into
108 grids in the same way. Thus, the discrete state-action
space grows 108 x 108 = 10'®. In our approach, we make
200 randomized rectangular features for the state space
and the action space respectively. In each feature, the sen-
sitive components are selected from the components of




the input vector with the probability 0.3 per component.
The number of iteration in the Gibbs sampling is 40, and
the other settings are the same as the rod-in-maze prob-
lem’s. It is compared with a regular grid approach: the
state space is uniformly partitioned into 2% = 256 regular
exclusive hyper-rectangles without gaps, and the action
space is also uniformly partitioned into 2% = 256 regular
exclusive hyper-rectangles without gaps. Note that in the
regular grid approaches, the hyper-rectangles correspond
to the components of the feature vector and used only for
value approximation, therefore the actions are selected
from the 102 discrete action space.
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Fig. 9 Learning results averaged over 10 trials in the 3-
joints redundant-arm reaching task. The vertical axis
gives the averaged reward over making 1000 decision
steps.
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Fig. 10 Learning results averaged over 10 trials in the
4-joints redundant-arm reaching task. The vertical
axis gives the averaged reward over making 1000 de-

cision steps.

Fig.11 compares the performance of the random
coarse coding against the regular grid approach averag-
ing over 10 runs.

The best solutions of this task are composed of only
three decision steps. Although the proposed method gen-
erates different features in each trial, it can find the best
solution in all the cases. On the other hand, the uniform
grid approach couldn’t find any solutions even though the
number of features are larger than the random coarse cod-
ing’s.
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Fig. 11 Learning results averaged over 10 or 13 trials in
the 8-joints redundant-arm reaching task. The verti-
cal axis gives the averaged reward over making 1000
decision steps.

6. DISCUSSION

6.1 Relation between the Pattern of the Random Fea-
tures and the Learning Performance

In the simulation results, the coarse coding sometimes
failed to find optimum solutions because of the random-
ness of the features. However, it could find approximate
solutions using just 200 state features and 200 action fea-
tures not only in the 3 x 3-dimensional state-action prob-
lem but in the 8 x 8-dimensional problem as well. Re-
flection on some of these will make clear that the coarse
coding is suited for finding feasible or reasonable solu-
tions in high-dimensional problems that have a number
of sub-optimum solutions. That is to say, it is hard to
find optimum solutions, especially when the problem has
a needle-like evaluation function. The regular grid ap-
proaches could not find any solutions at all, though using
no less computational resources than the coarse coding’s.
In the grid approaches, each cell exclusively corresponds
to a specific binary (0-1-valued) feature, and the set of
feature vectors is always linearly independent. On the
other hand, the coarse coding tends to generate linearly
independent feature vectors for essential states (or ac-
tions) without exponential growth of the variables, how-
ever, the linearly independence between the feature vec-
tors is not guaranteed.

Fig.12 shows landscapes of learned Q-functions in the
redundant-arm reaching task. The landscape in the ran-
domized coarse-coding is smooth and better to approxi-
mate functions than the regular grid approach.

The learning performance of the coarse coding also
depends on the choice of the sensitive components, the
ranges and the size of the rectangles for the features. In
this paper, these parameters are simply given randomly,
but it is also possible to consider some other sophisticated
methods; One is feature iteration approach [1], whereby
a set of features is selected, some computation is done us-
ing these features, and based on the results of the compu-
tation, some new features are introduced. Indeed, about
30 percent of the coarse-coding features are not used in
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are kept constant. Righthand side: A landscape of a learned Q-function using the regular grid approach in the same

condition.

the rod-in-maze experiments. When we give the coarse
coding features randomly, we should fix a few parame-
ters: One is a number of the features, and the other is
probability for choosing sensitive components from the
input vector to generate rectangular features. In this pa-
per, the probability for sensitive components is experi-
mentally designed so that about 10 percent of the features
are active in all the state or action.

This paper introduced a value approximation tech-
nique that the state features and the action features are
separately given. It is advantageous to execute Gibbs
sampling over action space. The other approach can be
considered to generate features directly over state-action
space, however, it tends to cost heavy computation in
Gibbs sampling.

6.2 Finding an Appropriate Number of the Iteration
in Gibbs Sampling

In the experiments, the numbers of the iteration are
given ad hoc. In general, it is difficult to predict the lower
bounds of the number of the iteration in Gibbs sampling.
It is noteworthy that the Gibbs sampling affects only the
time for action selection, it does not affect the learning
steps. Therefore, the number of the iteration should be
given as long as possible. To get good samples with less
time, overrelaxation techniques or simulated annealing
[2] are possible.

7. CONCLUSION

This paper proposed a new approach combining ran-
dom rectangular coarse coding with Gibbs-sampling ac-
tion selection to cope with reinforcement learning in
high-dimensional domains. The proposed coding method
is very simple and quite suited both to approximate Q-
functions in high-dimensional spaces, and to execute
Gibbs sampling. The scheme using Gibbs-sampling en-
ables to handle high-dimensional action space in RL
problems. The parameters of the rectangular features are
given randomly, however, it works well in Rod-in-maze
problem and Multi-joint arm problem.

(1]

(3]

[10]

[11]
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