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Abstract: Learning performance of natural gradient actor-critic algorithms is outstanding especially in high-dimensional
spaces than conventional actor-critic algorithms. However, representation issues of stochastic policies or value functions
are remaining because the actor-critic approaches need to design it carefully. The author has proposed random rectangular
coarse coding, that is very simple and suited for approximating Q-values in high-dimensional state-action space. This
paper shows a quantitative analysis of the random coarse coding comparing with regular-grid approaches, and presents a
new approach that combines the natural gradient actor-critic with the random rectangular coarse coding.
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1. INTRODUCTION

Reinforcement learning (RL) is a promising paradigm
for robots to acquire control rules automatically in un-
known environments. The most popular RL algorithm is
tabular Q-learning [7] because of its simplicity and well-
developed theory. However, RL in robotics is to deal
with high-dimensional continuous state-action spaces,
that immediately raises the curse of dimensionality, in
which costs increase exponentially with the number of
the state-action variables. It includes two issues in RL:
One is a generalization problem for Q-function over
high-dimensional continuous spaces, and the other is a
sampling problem that is to select actions following a
given distribution over high-dimensional continuous ac-
tion spaces. To deal with these issues, a novel technique
of Q-learning is proposed that combines random rectan-
gular coarse coding with an action selection scheme us-
ing Gibbs-sampling[4]. The random rectangular coarse
coding is very simple and quite suited both to approxi-
mate Q-functions in high-dimensional spaces and to ex-
ecute Gibbs sampling. Gibbs sampling enables us to
execute action selection following Boltsmann distribu-
tion over high-dimensional action space. The Q-learning
algorithm can approximate optimum state-action value
function independent of the policy being followed, how-
ever, Boltzmann exploration strategy does not always im-
prove the agent’s behavior efficiently.

In high-dimensimonal space, applying gradient meth-
ods to improve the agent’s policy is one promising solu-
tion. Natural-gradient actor-critic algorithms are elegant
policy gradient methods that are making use of first and
second order partial derivatives, therefore its performance
is outstanding especially in high-dimensional spaces than
conventional actor-critic algorithms[2][5]. However, rep-
resentation issues of stochastic policies or value functions
are remaining because the actor-critic approaches need to
design it carefully. This paper presents a new approach
that combines the natural gradient actor-critic with the
random rectangular coarse coding and Gibbs-sampling.

It discharges us from burdensome designing policy func-
tions for each task.

2. PROBLEM FORMULATION

Let S denote state space, A be action space, R be a
set of real number. At each discrete time t, the agent
observes state st ∈ S, selects action at ∈ A, and then
receives an instantaneous reward rt ∈ R resulting from
state transition in the environment. In Markov decision
processes (MDPs), the reward and the next state may be
random, but their probability distributions are assumed to
depend only on st and at. And the next state st+1 is cho-
sen according to the transition probability T (st, a, st+1),
and the reward rt is given randomly following the expec-
tation r(st, a). The agent does not know T (st, a, st+1)
and r(st, a) ahead of time. The objective of RL is to con-
struct a policy that maximizes the agent’s performance.
Consider cumulative discounted reward as a performance
measure for infinite horizon tasks:

Vt =
∞∑

k=0

γk rt+k , (1)

where the discount factor, 0 ≤ γ ≤ 1 specifies the impor-
tance of future rewards, and Vt is the value at time t. In
MDPs, the value can be defined as:

V π(s) = E

[ ∞∑

t=0

γt rt

∣∣∣∣∣ s0 = s, π

]
, (2)

where E{·} denotes the expectation. The learning objec-
tive in MDPs is to find optimum policies that maximize
the value of each state s defined by Eq.(2). The state S
and the action A are both defined as multi-dimensional
continuous spaces in this paper.

3. RANDOM RECTANGULAR COARSE
CODING FOR HIGH-DIMENSIONAL

SPACES

Value function approximation can be significantly en-
hanced through the use of feature extraction, a process
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Fig. 1 An example of the random rectangular coarse
coding using 9 features in two-dimensional input
space. The coarse feature T4 is sensitive to the com-
ponent x1, and it is defined by the arrow width in the
sub-space x1. But the T4 ignores the component x2,
then the rectangle covers the other all sub-space x2.
The feature T5 is defined similarly.

that maps the input space x into some vector F (x) =
(f1(x), f2(x), · · · , fn(x)), that is refered to feature vec-
tor associated with x. Feature vectors summarize what
are considered to be important characteristics of the in-
put space. One of the most important cases of the value
function approximation is that in which the approximate
function is a linear function of the parameter vector W =
(w1, w2, · · · , wn) that has the same number of the com-
ponents as the feature vector F (x). For example, the
state value is approximated by

V̂ (s) =
1

||F (x)||
n∑

i=1

wifi(x), (3)

This value function is said to be linear. When the set
of the feature vectors {F (x)|x ∈ S} is linearly inde-
pendent, then it is known that the predictions of the TD-
methods converge in expected value to the ideal predic-
tions [6].

To generate feature vectors that are linearly inde-
pendent in high-dimensional spaces, random rectangular
coarse coding is introduced. To explain the concept of the
random rectangular coding, consider a randomized rect-
angular feature f(x) that is an element of the feature vec-
tor. When an input vector x is inside of the rectangle,
then the corresponding feature has the value 1, otherwise
0. In our approach, the feature rectangles are overlapped
in many places. This kind of approach is known as coarse
coding [6]. In higher dimensional space, a feature f(x)
selects a few arbitrary sensitive components of the input
vector x, and composes a hyper rectangle in the sensitive
subspace. That is, a feature f(x) ignores non-sensitive
components of the input vector x. For example in Fig.1,
the input vector x is two-dimensional (x1, x2), and the

rectangular T1, T2, · · · T9 are associated with compo-
nents of the feature vector respectively. Notice that T1,
T2, T3, T6, T7, T8 and T9 are sensitive to the compo-
nents both x1 and x2, however, T4 is sensitive only to x1

and T5 is sensitive only to x2.
For practical use, the feature fi(x) is defined by a rect-

angular area in a subspace of the input vector. The sub-
space is composed of arbitrary plural components of the
input vector, named sensitive elements. When the loca-
tion of the input vector x is the inside of the rectangle,
the value of the feature is given by fi(x) = 1, other-
wise fi(x) = 0. The selecting the sensitive elements or
the size of the rectangle are given randomly, but it has
sound statistics, i.e., the expected activating probability
is 10 % when the input vector x is thrown by uniform
distribution. Aggregating a number of such features, it
is possible to give a set of feature vectors that is linearly
independent so that the state-action values can be ade-
quately approximated over essential states (or actions) in
real-world tasks, without exponential growth of the mem-
ory requirements.
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Fig. 2 Linearly independence rates of the feature vectors
varying the number of the features (i.e., hyper rectan-
gles) in multi-dimensional input spaces. The upper is
2-dimensional, the lower is 8-dimensional space.

The random rectangular coarse coding seems ad hoc,
but its performance is nothing to regular grid approaches’
in the condition of the same number of features. Figure 2
shows linearly independence rates of the feature vectors
varying the number of the features in 2 or 8 dimensional
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1. Observe state st, choose action at with proba-
bility π(at|st,θ) that is a behavior policy, and
perform it. Observe immediate reward rt and
next state st+1.

2. Calculate the eligibility ∂ ln π(at|st,θ)
∂θ with re-

spect to policy parameters θ. Using these eligi-
bilities and corresponding weight parameters,
find the estimated advantage function:

Âπ(st, at) = (∇θ ln π(at|st,θ))T
w

3. Calculate the TD error and update the esti-
mated state value in the critic according to

δt = rt + γV̂ π(st+1)− V̂ π(st) ,

V̂ π(st) ← V̂ π(st) + αδt ,
where α is a learning rate, δt is temporal differ-
ence (TD).

4. Update weight parameters w for the advantage
function using δt and the eligibility:

w ← w + α
(
δt − Âπ(st, at)

)
∇θ ln π(at|st,θ)

5. Update policy parameters θ using the advan-
tage function parameter w:

θ ← θ + αpw ,
6. Let t← t + 1, and go to step 1.

� �
Fig. 3 A natural gradient Actor-Critic algorithm

input space. The rate is higher, it grows the higher prob-
ability of distinction between two inputs nearby, where
one input is given by uniform distribution provided in
[0, 1] for each axis, the other input is given by the normal
distribution of which the center is the former input and
the deviation is 0.1. Reinforcement learning in robotics
often encounters such a difficult situation that the agent
must distinguish near two points in the input space. The
reason of the outperformance of the random coarse cod-
ing is that the regular grid coding generates unnecessarily
restricted feature vectors so that only one of the compo-
nent is 1 and the others are 0.

4. LEARNING ALGORITHM

4.1 A Natural-Gradient Actor-Critic

Natural-Gradient Actor-Critic Algorithms (Fig.3) are
elegant policy gradient methods that are making use of
first and second order partial derivatives, therefore its per-
formance is outstanding especially in high-dimensional
spaces. The advantage function is given by substructing
the state value from the state-action value. Note that the
basis function for approximating the advantage function
is given by the eligibility of the policy parameters. In
this paper, the action-selection probability π(ai|s,θ) is
given by Boltzmann distribution that contains associated
Θ(s, ai,θ) so that

π(ai|s,θ) =
exp (Θ(s, ai,θ))

∑DN

j=1 exp (Θ(s, aj ,θ))
, (4)

where N denotes the number of regular quantization for
each axis of the action space, and D is the number of the
dimension of the action space. The function Θ(s, a,θ) is
given by

Θ(s, a,θ) =
1

||F (s, a)||
n∑

k=1

fk(s, a) θk , (5)

where F (s, a) is a feature vector F (s, a) =
(f1(s, a), f2(s, a), · · · , fn(s, a)), that is the rectangular
coarse coding defined over the state-action space (s, a).
A policy parameter θk is associated with the feature
fk(s, a). From partially differentiating Eq.(4),

∂ ln π(ai|st,θ)
∂Θ(st, ak,θ)

=

⎧
⎪⎨

⎪⎩

1− exp(Θ(st,ai,θ))∑DN

j=1
exp(Θ(st,aj ,θ))

, k = i

− 1∑DN

j=1
exp(Θ(st,aj ,θ))

otherwise.

Since the denominator in Eq.(4) grows too large in high-
dimensional action space, the eligibility in Fig.3 can be
approximated as :

∂ ln π(ai|st,θ)
∂θk

� fk(st, ai)
||F (st, ai)||

As a result, the algorithm becomes very simple form.
The feature vector over state-action space F (s, a) is

composed of state features and action features as be-
low. State features fj(s) where j ∈ {1, 2, . . . Ts}
that are defined in state space and action-features gk(a)
where k ∈ {1, 2, . . . Ta} that are defined in action
space are introduced. It is desirable that L1 norm of
the feature vectors are constant in linear function ap-
proximation. Therefore, state-feature vectors F (s) that
has 2Ts components F (s) = (F1(s), F2(s), · · ·F2Ts

(s))
and action-feature vectors G(a) that has 2Ta compo-
nents G(a) = (G1(a), G2(a), · · ·G2Ta

(a)) are given by
the state-features fj(s) and action-features gk(a) respec-
tively according to

Fj(s) =
{

fj(s) , where j ≤ Ts

1− f(j−Ts)(s) otherwise.
(6)

Gk(a) =
{

gk(a) , where k ≤ Ta

1− g(k−Ta)(a) otherwise.
(7)

In this paper, the state-action feature F (s, a) =
(f1(s, a), · · · , fn(s, a)) is given by the product of the
state feature Fj(s) and the action feature Gk(a). Then,
the function Θ(s, a,θ) in Eq.5 is given by

Θ(s, a,θ) =
1

Ts Ta

2Ts∑

j=1

2Ta∑

k=1

Fj(s)Gk(a) θjk , (8)

where θjk are policy parameters of which the number is
2Ts× 2Ta, and 1

Ts Ta
is a normalization factor so that the

L1 norm of the feature vectors composed of Fj(s) and
Gk(a) keep 1 constant. The state value V̂ π(s) in Fig.3 is
represented using only the state feature Fj(s) as Eq.3.



4.2 Action Selection Scheme in High-Dimensional Ac-
tion Space

As shown in Eq.(4), the naive action-selection scheme
needs to calculate all discrete action values, that gives
rise to exponentially increase with the number of the ac-
tion dimension. However, an action-selection method for
high-dimensional action space using Gibbs sampling is
a powerful technique for generating samples from multi-
dimensional complex distribution [4].

a1

a2

P(a)select

Fig. 4 An action-selection with a regular grid approach
in two-dimensional action space. The probability
function of the action selection P (a) is represented
by quantizing the action space a1 − a2 into a finite
number of cells.

In this paper, regular grid partitioning is used that di-
vide D equivalent parts into each dimension of the action-
space. That is, when the action-space is N -dimensional,
the partitioning yields DN cells. Each cell is considered
to be a discrete action ai where i = {1, · · · ,DN}. For
each decision epoch, an action ai is selected following
an associated probability function P (ai). Fig.4 shows
the regular grid partitions and its distribution function in
two-dimensional action-space.

In the Gibbs sampler, the components of the multidi-
mensional random variable are resampled in turn, condi-
tional on the others, using some fixed ordering. Fig.5 il-
lustrates the Gibbs sampling for a case with two variables
(a1, a2). The distribution for action selection probability
is equal to Fig.4. In the initial step of Gibbs sampling,
an arbitrary sample (a1, a2) is selected in advance. In
each iteration, the top right (1) in Fig.5 represents select-
ing action a1 following the conditional probability given
a2, and the bottom left (2) in Fig.5 represents selecting
action a2 following the conditional probability given a1
at the top right (1) in Fig.5, then the iteration is com-
pleted. The bottom right (3) in Fig.5 represents the next
iteration, selecting action a1 again, following the condi-
tional probability given a2 at the bottom left (2) in Fig.5.
After a sufficient number of iterations, we can take a1
and a2 as the sample from the distribution. The resulting
sample can be considered to be independent of the sam-
ple in the initial step. It is a difficult problem to predict
the lower bounds of the number of the iteration, there-
fore we should choose it experimentally. Gibbs sampling
is particularly well-adapted when the joint distribution is
not known explicitly, but the conditional distribution of
each variable is known. In high-dimensions, getting joint
distribution costs too expensive computational resources.
For example, if a regular grid partition divides each di-
mension of the 8-dimensional action space into 10 parts,

then finding the joint distribution for the flat action se-
lection costs memory capacity and computation over 108

variables, whereas the Gibbs sampling, that uses condi-
tional distribution, costs 10 + 8 variables and the num-
ber of iteration can be reduced to 102 or 103. That is,
Gibbs sampling cuts down the computational cost over
1/10000.

Throughout this paper, probability of the action se-
lection is given by Eq.(4), but we use particular nota-
tion for Gibbs sampling. Suppose that a regular grid
partition divides D parts into each dimension of the
N -dimensional action space, same as the case of the
flat action selection. We give a N -dimensional action
a as a = (a1, a2, . . . aN ), where each component an

(n ∈ {1, 2, · · ·N}) is an ∈ an
d (d ∈ {1, 2, · · ·D}). A

value of Θ(s, a,θ) in Eq.(4) is given by Θ(s, a,θ) =
Θ(a1, a2, . . . aN |s). This value is equal to the flat action
selection method’s. Sampled components of the action
vector at the iteration t in the Gibbs sampling is given by
a1(t), a2(t), . . . aN (t). Then, the Gibbs sampler updates
components of the action vector at the iteration t + 1 fol-
lowing the conditional distribution as

a1(t + 1) ∼ P (a1|a2(t), a3(t), . . . aN (t)) ,

a2(t + 1) ∼ P (a2|a1(t), a3(t), . . . aN (t)) ,
...

aN (t + 1) ∼ P (aN |a1(t), a2(t), . . . aN−1(t)) ,

where the conditional probability P (an
i |a1, a2, . . . aN ) is

given by the following Boltzmann distribution:

P (an
i |a1, a2, . . . aN )

=
exp

(
Θ(a1, a2, . . . an

i , . . . aN |s))
∑D

d=1 exp
(
Θ(a1

d, a
2
d, . . . a

n
d , . . . aN

d |s)
) . (9)

It is simply repetition of similar processes to the flat ac-
tion selection’s shown in Eq.(4), however, getting off with
one dimensional action selection. The obvious advantage
is that the Gibbs sampler can get equivalent1 samples fol-
lowing Eq.(4) without checking out all Θ(s, ai,θ) over
the high-dimensional action-space. Note that since the
calculation of the conditional probability in each iteration
is along an arbitrary axis of the action space, the compu-
tational cost can be reduced in the proposed rectangular
coarse coding.

5. EXPERIMENTS

This section evaluates the proposed method empiri-
cally comparing with Q-learning.

5.1 Crawling Robots
Fig.6 shows a several-legged crawling robot in which

both the state and the action are high-dimensional. In
the robot, each leg has two joints, and it is arranged in
parallel. Therefore the dimension of state-action spaces
can be easily varied according to adding or removing the
1It is supposed that the number of the iteration is enough. Since predict-
ing the lower bounds of this number is a difficult problem, the samples
would be likely to approximate Eq.(4).
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Fig. 5 An example of the Gibbs sampling scheme with the regular grid approach in two-dimensional action space.
The top left shows a joint distribution of the action selection probability. The top right (1) represents selecting
action a1 following the conditional probability given a2. The bottom left (2) represents selecting action a2 following
the conditional probability given a1 at the top right (1). The bottom right (3) represents selecting action a1 again,
following the conditional probability given a2 at the bottom left (2).

Fig. 6 A simulator of a several-legged crawling robot.

legs. Note that although the state and action space grows
largely, the complexity of the problem is not so changed
because the number of solutions also increases. The main
issue of this simulation is to find better policies in high-
dimensional action space.

In this simulation, the objective of learning is to find
control rules to move forward, but the agent does not
know the dynamics ahead of time. The controller im-
proves its behavior through a process of trial and error.
At each time step, the agent observes current state, and
select action, and immediate reward is given as a result of
the action and state transition, and the time step proceeds
to the next step. The reward signal reflects the speed of
the body at each step. These robots have bounded contin-
uous and discrete state variables. Continuous state vari-
ables are angular-position of the joints, and discrete state
variables represent touch sensors for each leg. The learn-
ing agent observes these state variables. The action that
the agent selects is an objective angular-position of the

Table 1 Relation between the number of legs and
dimensions of state or action space

Legs State dimension Action dimension

1 3 2
2 6 4
3 9 6
4 12 8

joint-motors. That is, the number of dimension of the ac-
tion space is the same as the continuous state’s. When
the agent selects action, the robot moves the motors to-
wards the commanded positions. When the joint-angles
move to the commanded position, or changing the vari-
ables of touch sensors in the way of moving, then the
movement stops and reward is given as the result of the
transition, and the time step proceeds to the next step.
When the case of sensor variable changing in the way
of moving joint-motors, the angular-position would not
correspond to the selected objective position. The body
moves forward or backward when some legs are touching
the ground and moving it. The learning controller should
find good assignment of crawling control rules for each
leg. For simplicity, it is assumed that there is no noise
in the state observation. Note that there are many control
rules that can move the body ahead.

Table 1 shows the relation between the number of legs
and dimensions of state or action spaces. When the robot
has only one leg, then the state space is 3-dimensional
where one is the touch sensor of the leg top, the oth-
ers are angular positions of the joints, and the action is
2-dimensional where the destination of the angular po-



Table 2 Relation between the number of legs and the
number of discrete states or actions by regular partition

Legs Number of states Number of actions

1 2× 1002 1002

2 22 × 1004 1004

3 23 × 1006 1006

4 24 × 108 108

sitions of the 2-joints. A regular grid partition divides
each dimension of the state or action space into 10 or
100 parts. Table 2 shows the number of discrete states
or actions by regular grid partitioning. The edges of the
random hyper-rectangles for the features are generated
along the dividing lines of the regular grid. In this ex-
periment, all the agents use 200 randomized rectangular
state features where its sensitive elements and the size
of the rectangle are randomly given so that the expected
activating probability is 10 % under the uniform distri-
bution. The features for the action space are also gener-
ated 200 randomized hyper-rectangles in the same way
as the state’s. The number of iteration in the Gibbs sam-
pling is (numOfActionDimension)× 5, the discount fac-
tor γ = 0.9, and the learning rate for the critic α = 0.2,
and the learning parameter for the actor αp = 0.001,
0.0005 or 0.00025. Before learning, all the state values
V̂ (s) are initialized to 20.

The proposed method is compared with a Q-learning
approach using the same rectangular coarse coding and
Gibbs sampling [4][5]. In the Q-learning, the action-
selection probability P (ai) is given by Boltzmann dis-
tribution that contains associated Q(s, ai) so that

P (ai) =
exp

(
Q(s,ai)−offset(s)

T×width(s)

)

∑DN

j=1 exp
(

Q(s,aj)−offset(s)
T×width(s)

) . (10)

The discount factor γ = 0.9, the temperature T keeps
0.4 constant, and the learning rate α = 0.2, offset(s)
and width(s) in Eq.(10) are given by the average and
deviation of Q-values in state s over 20 actions that are
sampled from uniform distribution. The number of iter-
ation in the Gibbs sampling is the same as the proposed
method’s. The features of the state and action are also the
same.

Fig.7, 8, 9 and 10 compare the performance of the
natural gradient actor-critic (NGAC) against Q-learning
averaging over 10 runs. When the state and action
spaces are small as Fig.7, the Q-learning outperforms
than the proposed method. However, even though the
learning parameters are all the same, the performance
of the proposed NGAC is improved in high-dimensional
state-action spaces. The learning parameter for the ac-
tor should be small for the learning stability in all cases.
The deviaton of the performance of the NGAC is larger
than the Q-learning’s. The performance of the Q-learning
is not so different between small and large state-action
spaces. In both algorithms, the learned behavior seems
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Fig. 7 Learning results averaged over 10 runs in the
crawling robot where state is 3-dimensional and ac-
tion is 2-dimensional (one leg). The vertical axis
gives the averaged reward over 1000 decision steps.
The errorbars are standard deviation.
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Fig. 8 Learning results averaged over 10 runs in the
crawling robot where state is 6-dimensional and ac-
tion is 4-dimensional (two legs). The vertical axis
gives the averaged reward over 1000 decision steps.
The errorbars are standard deviation.
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Fig. 9 Learning results averaged over 10 runs in the
crawling robot where state is 9-dimensional and ac-
tion is 6-dimensional (3 legs). The vertical axis gives
the averaged reward over 1000 decision steps. The
errorbars are standard deviation.
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Fig. 10 Learning results averaged over 10 runs in the
crawling robot where state is 12-dimensional and ac-
tion is 8-dimensional (4 legs). The vertical axis gives
the averaged reward over 1000 decision steps. The
errorbars are standard deviation.

similar. In the case of one-leg, the robot crawls intermit-
tently only when the leg scratches the ground . In the
case that the number of legs is 2, 3 or 4, the robots move
two-legs alternately so that the body always moves to the
front without stopping.

5.2 Reaching Tasks using Multi-Link Redundant-
Arms

GOAL

Fig. 11 A learned example behavior of a reaching task
using redundant-arm that have four-joints. The con-
ditions that the joints are shown by black circles are
the positions at which the learner is making deci-
sions.

The second example is multi-joint arm reaching tasks
[4][5]. Fig.11 shows a sample behavior of the task with
a redundant arm that is composed of four links and four
joints in series where the state space and action space are
both 4-dimensional. Fig.12 shows a sample behavior in
8-joints where the state space and action space are both
8-dimensional. In both tasks, the best solutions are com-
posed of only three decision steps: 1) curling the arm, 2)

GOAL

Fig. 12 A learned example behavior of a reaching task
using redundant-arm that have eight-joints. The con-
ditions that the joints are shown by black circles are
the positions at which the learner is making deci-
sions.

rotating, 3) extending the arm, and thereafter reaching the
goal. Also many best solutions exist in these tasks. In the
4-link-arm, the agents divide each dimension of the state
and action spaces into 100 parts by regular grids, and in
the 8-link-arm the agents divide each dimension into 10
parts. All the agents use 200 randomized rectangular state
features and 200 randomized rectangular action features
same as the crawling robots’.
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Fig. 13 Learning results averaged over 10 trials in the
4-joints redundant-arm reaching task. The vertical
axis gives the averaged reward over making 1000 de-
cision steps.

Fig.13 and 14 compare the performance of the pro-
posed NGAC against Q-learning averaging over 10 runs.
When the state and action spaces are small as Fig.13,
NGAC is comparable to Q-learning. However, even
though the learning parameters are the same, the NGAC
is fairly good in high-dimensional state-action space as
Fig.14. The deviaton of the performance of the NGAC is
larger than the Q-learning’s in all the cases.
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Fig. 14 Learning results averaged over 10 trials in the
8-joints redundant-arm reaching task. The vertical
axis gives the averaged reward over making 1000 de-
cision steps.

6. DISCUSSION

6.1 Relation between increase of action dimension and
the learning performance

When the dimension of the state-action space is get-
ting large, the performance of the proposed NGAC shows
a marked rising tendency whereas the performance of the
Q-learning is not so different or becoming worse. This re-
sult supports the efficiency of the natural-gradient method
in high-dimensional space.

6.2 Setting of learning parameter for policy update

In actor-critic algorithms, since the policy updating
must be done sufficiently slowly than the estimating the
state-action value, we need to select adequate value of the
learning parameter for the actor αp carefully. For this rea-
son, αp is a critical parameter under the current circum-
stances. The appropriate range of the αp would depend
on a maxmum absolute value of the advantage function
and representation of the policy function. Finding that
range is a future work.

6.3 Finding an appropriate number of the iteration in
Gibbs sampling

In the experiments, the numbers of the iteration are
given ad hoc. In general, it is difficult to predict the lower
bounds of the number of the iteration in Gibbs sampling.
It is noteworthy that the Gibbs sampling affects only the
time for action selection, it does not affect the learning
steps. Therefore, the number of the iteration should be
given as long as possible. To get good samples with less
time, overrelaxation techniques or simulated annealing
[3] are possible.

6.4 Applying eligibility traces to the NGAC

Eligibility traces enhance the robustness of the learn-
ing algorithms against not only the non-Markovian ef-
fects but incomplete state-action value approximation [5].
Combining it with the proposed approach is very easy.

7. CONCLUSION

This paper proposed a novel actor-critic approach
combining random rectangular coarse coding with Gibbs-
sampling action selection to cope with reinforcement
learning in high-dimensional domains. The proposed
coding method is very simple and quite suited both to
represent action-selection probability function in high-
dimensional spaces, and to execute Gibbs sampling for
action selection. The rectangular features are given ran-
domly, however, it works well in several robot prob-
lems. The scheme using Gibbs-sampling enables to
handle high-dimensional action space in RL problems
without burdensome tuning of several learning parame-
ters for varying dimensions. The natural-gradient based
actor-critic method is quite efficient in high-dimensional
spaces.
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